

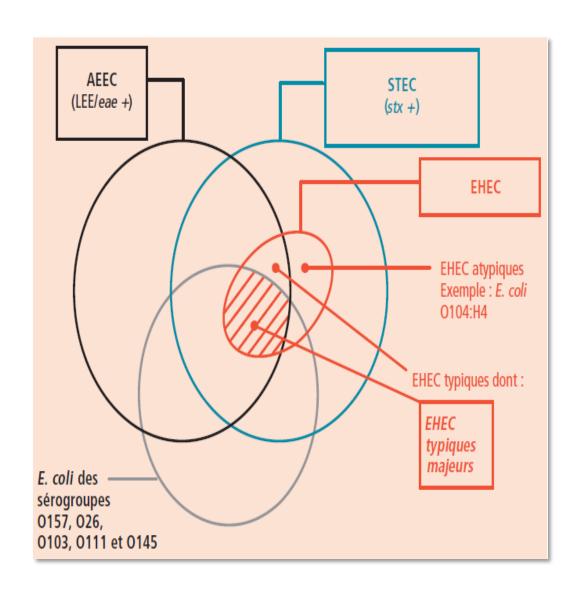
Journée d'infectiologie du Littoral Breton (JILB) - Vannes

Mardi 13 septembre 2022 - 15h30-16h

SHU de l'enfant - Aspects microbiologiques

Pr. Vincent CATTOIR

Service de Bactériologie-Hygiène hospitalière, CHU de Rennes CNR de la Résistance aux Antibiotiques (laboratoire associé "Entérocoques") Faculté de Médecine & Unité Inserm U1230, Université de Rennes 1



Pathovars d'E. coli

Site d'infection		Pathovar	Symptômes
InPEC	Intestin grêle	EPEC (E. coli entéropathogène)	Diarrhées infantiles (<2 ans) dans PVD
(E. coli pathogène intra-intestinal)		ETEC (E. coli entérotoxinogène)	Diarrhées aqueuses (turista)
maa mesama)		DAEC (E. coli à adhérence diffuse)	Diarrhées aiguës (enfants 2-6 ans)
	Gros intestin	EHEC (E. coli entérohémorragique)	Diarrhées hémorragiques, SHU
		EIEC (E. coli entéroinvasif)	Diarrhées aqueuses, dysenterie
	Intestin grêle et gros intestin	EAggEC (E. coli entéroaggrégatif)	Diarrhées persistantes
		AIEC (E. coli à adhérence invasive)	Inflammation intestinale chronique
ExPEC	Système urinaire	UPEC (E. coli uropathogène)	80% des infections urinaires, pyélonéphrites
(E. coli pathogène			pycionepintes
extra-intestinal)	Système nerveux central	NMEC (E. coli induisant des méningites néonatales)	Méningites, choc septique

1ère description EHEC (O157:H7) en 1982 aux Etats-Unis

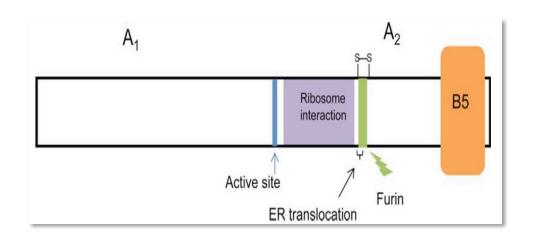
Définition des EHEC

- ✓ Production d'une cytotoxine appelée Shiga toxine Stx (anc. vérotoxine), responsable de la virulence
- ✓ Ilot de pathogénicité, dénommé locus d'effacement des entérocytes (LEE), impliqué dans l'adhésion à l'épithélium intestinal

EHEC typiques majeurs : 026:H11, 0103:H2, 0111:H8, 0145:H28, 0157:H7

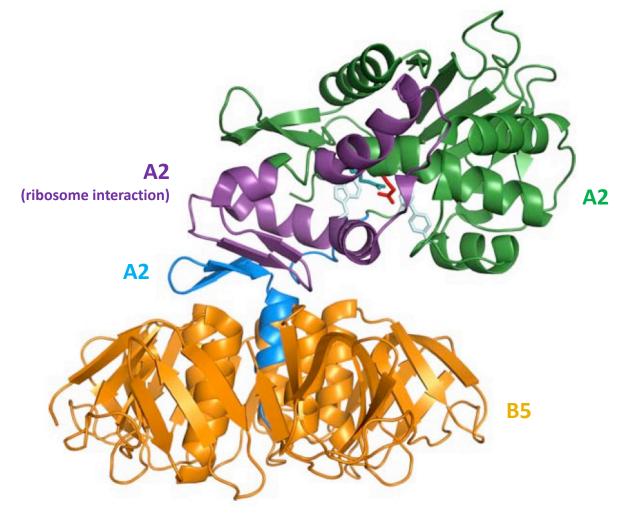
Classification des STEC

Selon Karmali et al., 5 séropathotypes :


Séropathotype	Incidence relative	Implication dans des épidémies	Association avec les SHU ou les colites hémorragiques	Sérotypes
A	Élevée	Fréquente	Oui	0157:H7, 0157:NM*
В	Modérée	Non fréquente	Oui	O26:H11, O103:H2, O111:H8/NM, O121:H19, O145:NM
C	Faible	Rare	Oui	091:H21, 0104:H21, 0113:H21, et autres sérotypes.
D	Faible	Rare	Non	Multiples sérotypes
E	Non humain**	n.a.	n.a.	Multiples sérotypes

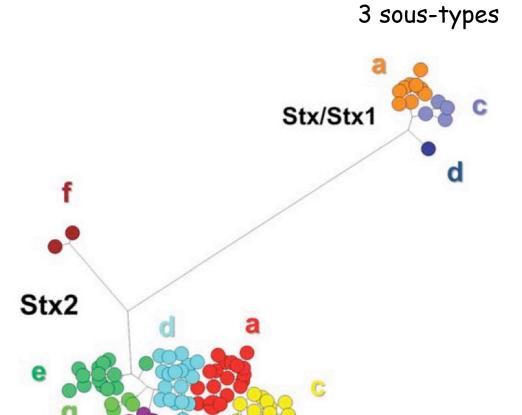
^{*} NM : non mobile ; ** Sérotypes de STEC isolés chez les animaux mais jamais associés à des infections humaines ; n.a. : non applicable.

Gènes de virulence


Gene	Harboring	Virulence factors
STEC virulence genes		
stx1	Prophage	Shiga-toxin 1 Phage tempéré lambdoïde
stx2	Prophage	Shiga-toxin 2 J intégré dans le chromosome
eae	LEE pathogenicity island (chromosome)	Intimin (adhesin)
Tir	LEE pathogenicity island (chromosome)	Intimin receptor
e-hlyA	Plasmid	Enterohemolysin
ehxA	Plasmid	Enterohemolysin
lpfA	Chromosome	Structural subunit of long polar fimbriae (LPF)
saa	Plasmid	Autoagglutinating adhesin
Ter	Chromosome	Tellurite resistance
espP	Plasmid	Extracellular serine protease
sab	Plasmid	Autotransporter that contributes to biofilm formation

Shiga toxines (Stx)

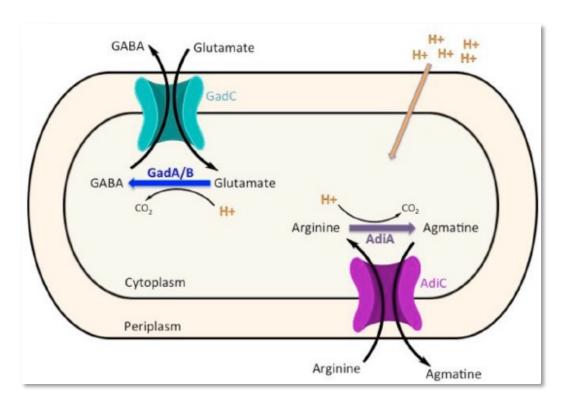
Structure AB₅:


- 1 sous-unité A : activité toxique (clivé en A1 et A2)
- 5 sous-unités B : liaison au récepteur spécifique = globotriosylcéramide (Gb3)

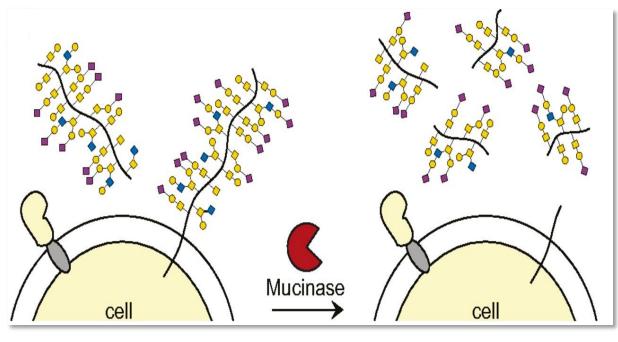
Structure de Stx1 (~70 kDa)

Stx1 et Stx2

7 sous-types

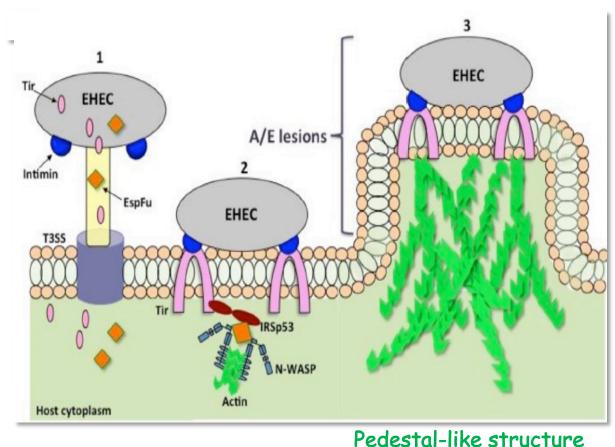

Toxin type(s)	Linked with serious human disease; difference(s) from prototype toxin ^b
Stx	Yes
Stx1a	Yes
Stx1c	No; immunologically distinct
Stx1d	No; immunologically distinct, less potent
Stx2a	Yes
Stx2b (originally	No; the B subunit gene was not detected by
named VT-2d or	methods used to detect other sx_2 B subunit genes
Stx2d)	
Stx2c	Yes, less toxic to Vero cells and mice
Stx2d (Stx2dact)	Yes; more toxic after incubation with elastase,
	less toxic to Vero cells
Stx2e	No; binds to Gb4, associated with disease in pigs
Stx2f	No; originally isolated in STEC from pigeons;
	immunologically distinct
Stx2g	No; the stx_{2g} gene is not amplified by primers
	specific for stx _{2a}

Stx2 plus virulente que Stx1 (notamment Stx2a et Stx2d)


Physiopathologie - Colonisation

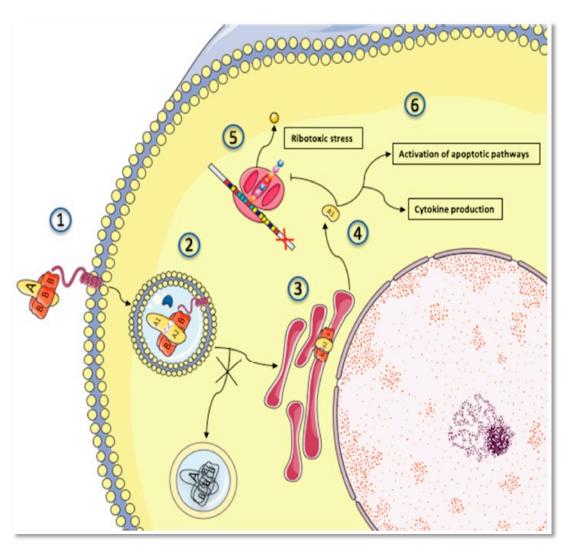
Résistance au pH acide (estomac)

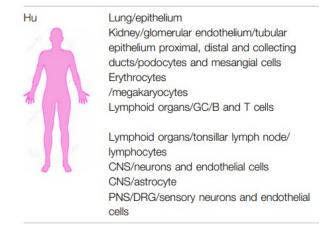
3 AR systèmes dont AR1 (glucose-rep), AR2 (glutamate-dep) and AR3 (arginine-dep)


Pénétration au sein du mucus

Sécrétion d'une mucinase = métalloprotéase StcE + flagelles et pili

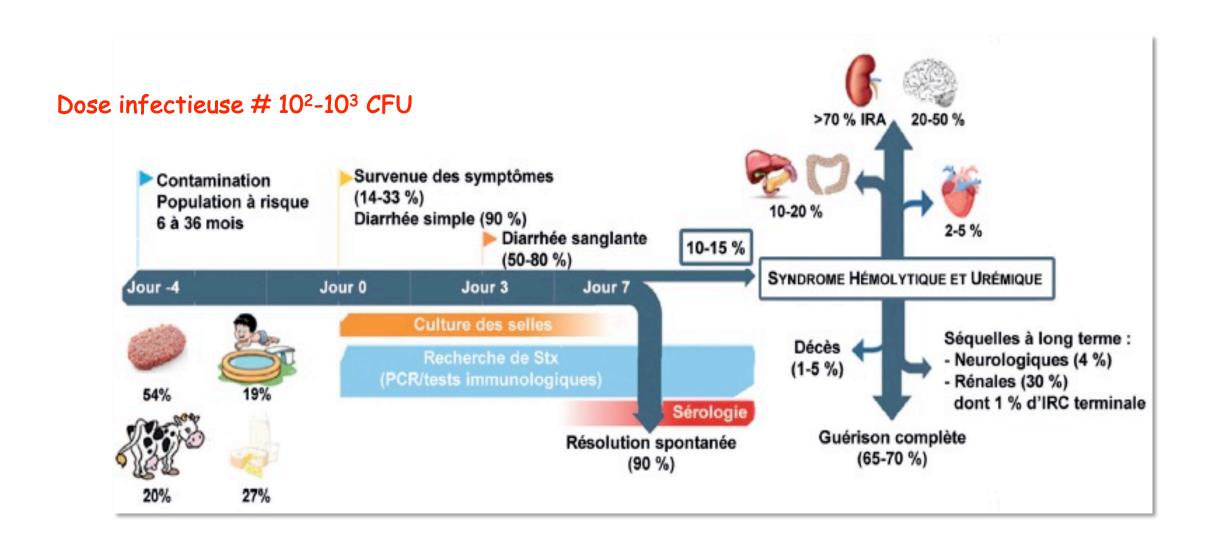
Physiopathologie - Adhésion


Lésions d'attachement et d'effacement (A/E) - Idem EPEC

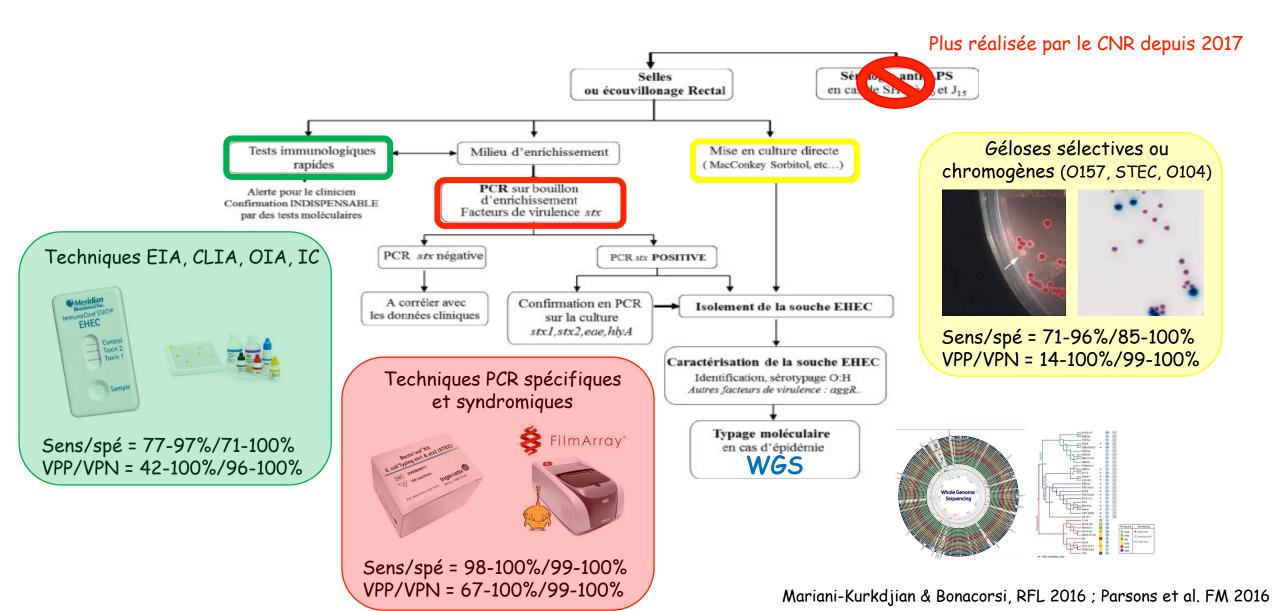

ESCT ESCD ESCU
OM
PG ESCT ESCR

Locus LEE (35,6 kb, 41 gènes, 5 opérons): LEE1 LEE2 LEE3 LEE5 LEE4 T355 Intimine/Tir EspFu

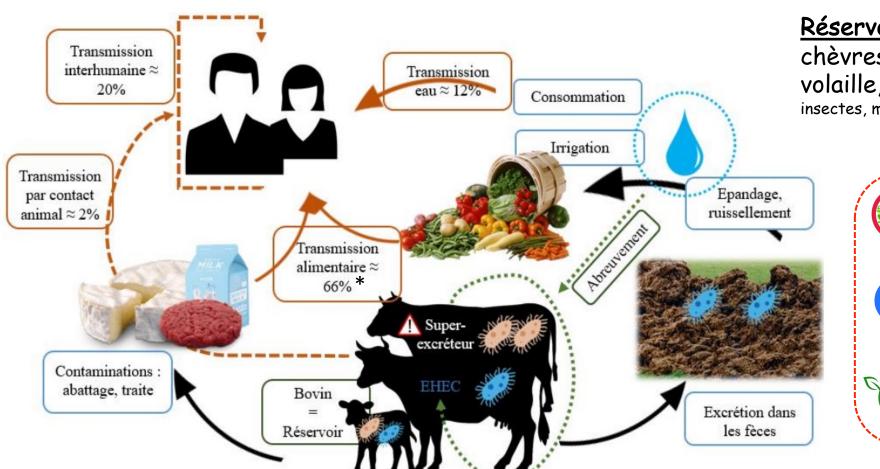
Physiopathologie - Cytotoxicité de Stx



1. Fixation des sous-unités B au récepteur Gb3 (CD77)



- 2. Internalisation du complexe (endocytose) et activation par clivage de la sous-unité A par la furine en 2 fragments (A1 et A2)
- 3. Contournement de la voie lysosomale et transport rétrograde vers le RE
- 4. Translocation du fragment A1 dans le cytoplasme
- 5. Effet ribotoxique avec clivage d'une adénine de l'ARNr 285 (sous-unité 605) → inhibition de la synthèse protéique + stress RE
- 6. Activation de nombreuses voies de stress et d'apoptose + production de cytokines pro-inflammatoires (ex. TNF- α , GM-GSF, IL-8 par monocytes)


Histoire naturelle de la maladie

Diagnostic bactériologique

Voies de contamination de l'homme

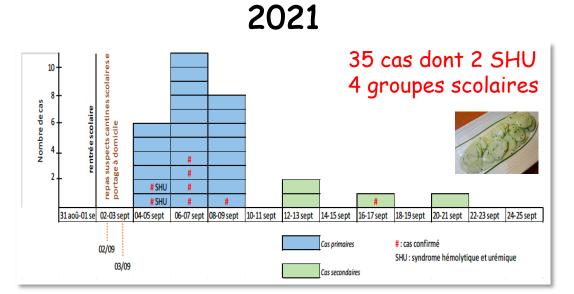
<u>Réservoir</u>: bovins+++, moutons, chèvres, porcs, chevaux, chiens, volaille, cervidés (amphibiens, poissons, insectes, mollusques...)

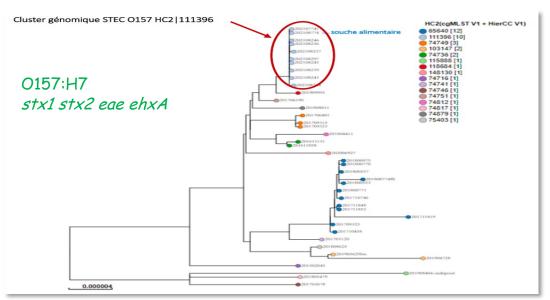
Sensible à la chaleur (cuisson, pasteurisation)

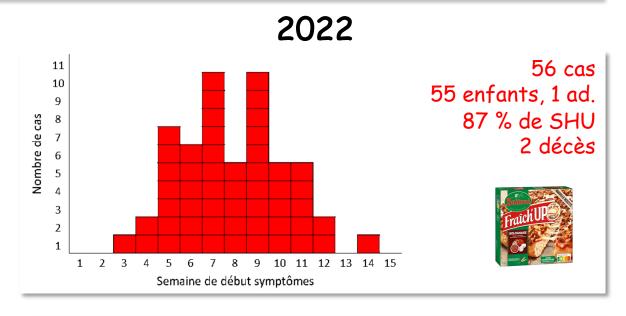
R à la réfrigération

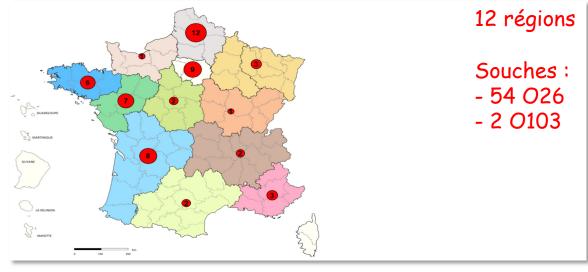
Survie plusieurs mois dans l'environ. ext.

^{*} Viande crue ou peu cuite, lait et produits laitiers crus, légumes crus, eau contaminée

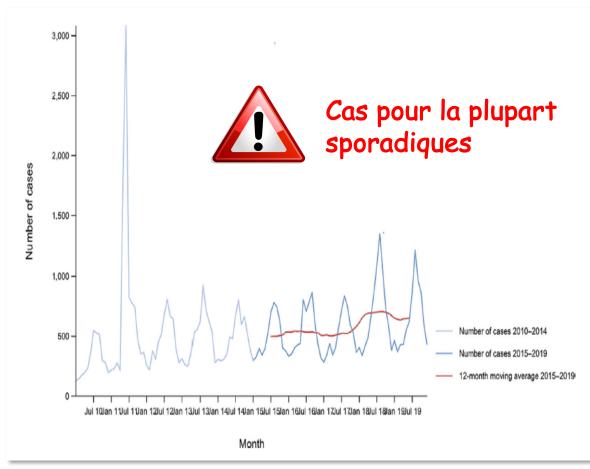

Epidémies à EHEC et modes de transmission


Tableau 1 Épidémies à EHEC su and published in the internation		SHU 4 décès		
Sérogroupe/sérotype	Pays (année)	Mode de transmission*	610	4 ueces
0104:H4 <i>stx2</i>	France (2011)	Alimentaire (graines germées de fenugrec)	15	[14]
0104:H4 <i>stx2</i>	Allemagne (2011)	Alimentaire (graines germées de fenugrec)	3816	[15]
0145:H28 stx1 eae	Norvège (2009)	Personne à personne (crèche)	16	[16]
0157	Angleterre (2009)	Contact avec des animaux de ferme (ferme pédagogique)	36	Cité dans [4]
0157: H- stx1 stx2 eae	Pays-Bas (2008-2009)	Alimentaire (viande de bœuf crue)	20	Cité dans [4]
0157	États-Unis (2008)	Alimentaire (viande de bœuf)	99	[17]
0111	États-Unis (2008)	Alimentaire (aliment non précisé)	341	[18]
0157:H-	États-Unis (2008)	Alimentaire (lait cru)	14	[19]
0157:H-	États-Unis (2007)	Contact avec des animaux de ferme (ferme pédagogique)	7	Cité dans [4]
0157:H- stx1 stx2 eae	Pays-Bas ; Islande (2007)	Alimentaire (salade verte)	50	Cité dans [4]
026:H11 stx1 stx2 eae	Danemark (2007)	Alimentaire (saucisse de viande bovine biologique)	20	Cité dans [4]
026 stx2 eae / 0145 stx1 eae	Belgique (2007)	Alimentaire (glace au lait pasteurisé)	12	Cité dans [4]
0157 stx1 stx2	Angleterre (2007)	Alimentaire (sandwich au poulet et herbes)	12	Cité dans [4]
0157:H7 stx2	États-Unis (2006)	Alimentaire (salade verte)	77	[20]
0157:H7 stx1 stx2	Japon (2006)	Contact avec des animaux de ferme (ferme laitière)	4	Cité dans [4]
0157:H7 stx2	États-Unis (2006)	Alimentaire (épinards)	205	Cité dans [4]
0103 stx1	Japon (2006)	Personne à personne (crèche)	8	Cité dans [4]
0103:H25 stx2	Norvège (2006)	Alimentaire (saucisse de viande ovine)	17	Cité dans [4]
026:H11 stx1	Japon (2006)	Personne à personne (crèche)	6	Cité dans [4]


Souche hybride STEC-EAggEC 0104:H4 stx2a+ eae- (BLSE+) + autres :


EAEC virulence genes	
aggA	Plasmid (pAA)
aggR	Plasmid (pAA)
aafA	Plasmid (pAA)
agg3	Plasmid
aatP	Plasmid (pAA)
aatA	Plasmid (pAA)
аар	Plasmid (pAA)
sepA	Plasmid (pAA)
sigA	Chromosome
pic	Chromosome
astA	Plasmid
set1	Chromosome
pet	Plasmid (pAA)
hlyE	Chromosome

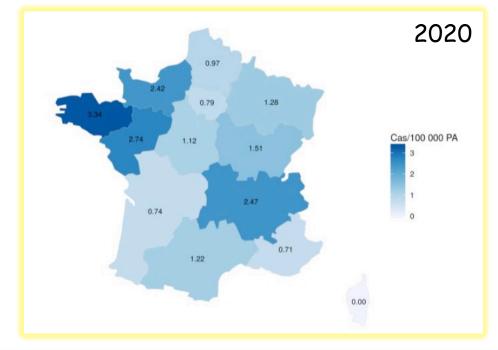
Dernières épidémies à EHEC en France

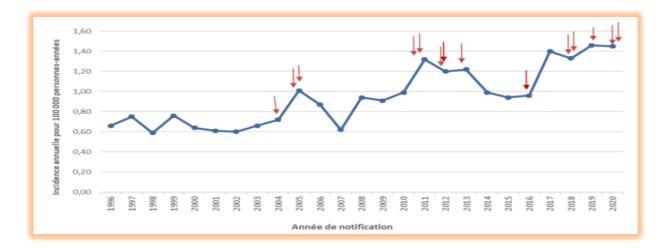


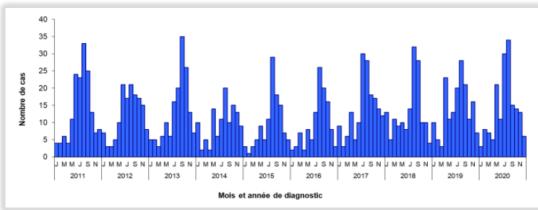
Epidémiologie européenne des infections à STEC

3^{ème} zoonose d'origine alimentaire (après Campylobacter spp. et Salmonella spp.)

	2019	2018	2017	2016	2015	Data source
Humans						
Total number of confirmed cases	7,775	8,161	5,958	6,474	5,929	ECDC
Total number of confirmed cases/100,000 population (notification rates)	2.21	2.28	1.67	1.79	1.65	ECDC

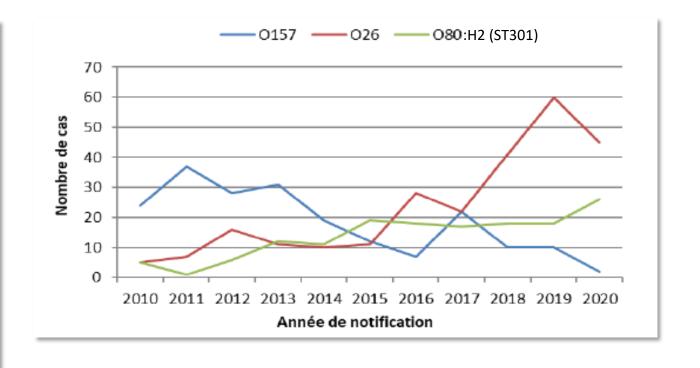

		2019			2018			2017		
Serogroup	Cases	MS	%	Cases	MS	%	Cases	MS	%	
O157	1,195	22	26.6	1,735	21	34.5	1,299	22	31.9	
O26	722	16	16.0	833	18	16.6	577	17	14.2	
NT ⁽¹⁾	572	11	12.7	497	9	9.9	493	10	12.1	
0146	220	11	4.9	179	9	3.6	139	8	3.4	
O103	213	13	4.7	233	14	4.6	245	13	6.0	
091	181	12	4.0	192	10	3.8	178	12	4.4	
0145	162	11	3.6	158	12	3.1	147	12	3.6	
O128 ⁽²⁾	113	12	2.5	107	10	2.1	79	11	1.9	


Virulence	No of animal	No of food	No of human	Relative frequency of the virulotype in*			
genes profile	isolates in 2019^	2019	olates in 2019 (%)		Hospitalisation	Bloody diarrhoea	
stx2; eae+	8	13	399 (42.1)	17.7	42.0	40.2	
stx2; stx1; eae+	26	3	285 (30.1)	5.9	35.7	64.8	
stx2; eae-	ND	42	90 (9.5)	2.7	24.3	14.8	
stx1; eae+	1	25	88 (9.3)	1.2	27.4	27.3	
stx1; eae-	ND	25	44 (4.6)	0.3	20.3	14.1	
stx2; stx1; eae-	1	30	42 (4.4)	1.4	15.3	19.4	
Total	36	138	948				


SHU pédiatriques en France (1996-2020)

Réseau de surveillance national depuis 1996 (n=32 services)

Année	Nombre de cas de SHU	Incidence annuelle	Année	Nombre de cas de SHU	Incidence annuelle
1996	81	0,66	2008	112	0,94
1997	92	0,75	2009	109	0,91
1998	76	0,59	2010	122	0,99
1999	93	0,76	2011	162	1,32
2000	79	0,64	2012	145	1,20
2001	74	0,61	2013	152	1,22
2002	73	0,60	2014	117	0,99
2003	80	0,66	2015	111	0,94
2004	87	0,72	2016	113	0,96
2005	122	1,01	2017	164	1,40
2006	104	0,87	2018	154	1,33
2007	74	0,62	2019	168	1,46
			2020	167	1,45
			Total	2 831	



SHU pédiatriques en France (2020)

Sérogroupe*	Total	% des cas
	N	confirmés†
O26:H11	51	40,5
080:H2	29	23,0
O157:H7	2	1,6
O145	5	4,0
0111	2	1,6
O55	4	3,2
0121	2	1,6
0103	1	0,8
0177	1	0,8
O109	1	0,8
0151	1	0,8
O165	1	0,8
O182	1	0,8
022	1	0,8
070	1	0,8
078	1	0,8
091	1	0,8
0145-0111	1	0,8
O26-O91	1	0,8
O80-O55	1	0,8
Présence de gènes stx dans les	17	13,5
selles sans sérogroupe identifié		13,3
Analyse négative	17	-
Total	142	

^{*} information non disponible pour 25 cas notifiés au système de surveillance

En 2020, 167 cas notifiés dont :

- 125 selles + par PCR stx (114 stx2, 10 stx1+stx2, 1 stx1)
- 95 souches isolées caractérisées par WGS (56 stx2a, 29 stx2d, 8 stx2a+stx1a)

Quizz VRAI W FAUX ?

Les souches d'EHEC produisent toutes Stx1 et/ou Stx2

La Shiga toxine inhibe spécifiquement la synthèse des acides nucléiques »

La viande haché est la seule cause de contamination alimentaire

Les techniques de biologie moléculaire (PCR) sont les plus sensibles pour la détection des EHEC

Les cas de SHU à EHEC sont principalement liés à des larges épidémies

Le principal sérotype actuellement responsable de SHU pédiatriques en France n'est plus 0157:H7 mais 026:H11

Remerciements

Centre National de Référence des *Escherichia coli*, *Shigella* et *Salmonella* Unité de Recherche et d'Expertise des Bactéries Pathogènes Entériques

Pr STEPHANE BONACORSI Biologie medicale

Microbiologie

Voir la page du service >

Hôpital Robert-Debré

48 boulevard Sérurier
 75019 Paris
 Télécharger le plan