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Background
As those with HIV infection live longer, ‘non-AIDS’ condition associated with immunodeficiency and
chronic inflammation are more common. We ask whether ‘non-HIV’ biomarkers improve differentiation
of mortality risk among individuals initiating combination antiretroviral therapy (cART).

Methods
Using Poisson models, we analysed data from the Veterans Aging Cohort Study (VACS) on HIV-infected
veterans initiating cART between 1 January 1997 and 1 August 2002. Measurements included: HIV
biomarkers (CD4 cell count, HIV RNA and AIDS-defining conditions); ‘non-HIV’ biomarkers
(haemoglobin, transaminases, platelets, creatinine, and hepatitis B and C serology); substance abuse or
dependence (alcohol or drug); and age. Outcome was all cause mortality. We tested the discrimination
(C statistics) of each biomarker group alone and in combination in development and validation data
sets, over a range of survival intervals, and adjusting for missing data.

Results
Of veterans initiating cART, 9784 (72%) had complete data. Of these, 2566 died. Subjects were
middle-aged (median age 45 years), mainly male (98%) and predominantly black (51%). HIV
and ‘non-HIV’ markers were associated with each other (Po0.0001) and discriminated mortality
(C statistics 0.68–0.73); when combined, discrimination improved (Po0.0001). Discrimination for
the VACS Index was greater for shorter survival intervals [30-day C statistic 0.86, 95% confidence
interval (CI) 0.80–0.91], but good for intervals of up to 8 years (C statistic 0.73, 95% CI 0.72–0.74).
Results were robust to adjustment for missing data.

Conclusions
When added to HIV biomarkers, ‘non-HIV’ biomarkers improve differentiation of mortality. When
evaluated over similar intervals, the VACS Index discriminates as well as other established indices.
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After further validation, the VACS Index may provide a useful, integrated risk assessment for
management and research.
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Introduction

With the advent of combination antiretroviral therapy
(cART), people with HIV infection are living longer [1–3]
and experiencing fewer AIDS-defining events and more
‘non-AIDS’ events [4]. Further, the majority of deaths
occurring among those on treatment are now classified as
‘non-AIDS’ (i.e. not attributable to one or more of the 26
AIDS-defining conditions identified by the Centers for
Disease Control and Prevention) [5–8]. Until recently, most
considered this the inevitable price of success – people are
living long enough on cART to die of other causes.

However, results from the Strategies for Management of
Antiretroviral Therapy (SMART) trial [9] suggest that at
least some of these ‘non-AIDS’ events are actually
associated with immunodeficiency and chronic viral
inflammation [9]. The trial compared structured interrup-
tion of cART to continuous therapy and made three
important observations. First, the differential effects of
treatment between the two arms were not fully captured by
changes in CD4 cell count or HIV RNA. Secondly, it was
found that there were more than twice as many ‘non-AIDS’
events as ‘AIDS’ events and only 8% of the deaths were
caused by AIDS conditions [10]. Thirdly, rates of cardio-
vascular, renal and liver disease and grade IV treatment
toxicities were higher in the treatment interruption arm. A
combined review of HIV cohort and SMART data [10]
demonstrated: (1) that morbidity and mortality among
those on cART are dominated by non-AIDS rather than
AIDS events; (2) there is a strong positive association
between non-AIDS deaths and both low CD4 cell counts
and high HIV RNA; and (3) the association with
immunodeficiency is consistent across several types of
non-AIDS events including liver disease, renal disease and
non-AIDS malignancy. The authors concluded that ‘We
need to adapt our research priorities to better understand
the full role of HIV in causing a wide range of clinical
diseases. . . . Clinicians caring for patients with HIV need to
. . . become aware of the best means to try to prevent and to
monitor for early signs of these [non-AIDS] outcomes.’

This goal would be facilitated by an index that combined
HIV and ‘non-HIV’ biomarkers associated with immuno-
deficiency and chronic viral inflammation. The most
logical way to weight these factors is according to risk of

all cause mortality because all cause mortality avoids
assumptions regarding causality. Further, all cause mortal-
ity is the outcome of greatest importance to patients. Such
an index could be used as a surrogate endpoint for clinical
trials and as a guide to clinical therapy.

While excellent weighted all cause mortality indices have
been established in HIV infection [3,11–14], these have
focused on HIV markers (CD4 cell count, HIV RNA and AIDS-
defining conditions). They have largely omitted biomarkers of
anaemia [15–18], liver disease [8,19–21], and renal disease
[22,23] despite their documented association with both
immunodeficiency and survival. In this study we used the
Veterans Aging Cohort Study (VACS), a sample of over 13500
veterans initiating cART within the Veterans Affairs Health-
care System (VA), to develop and initially validate the VACS
Index, which combines HIV and ‘non-HIV’ biomarkers.

Methods

Cohorts selected

The VACS includes the Virtual Cohort which has been
described in detail elsewhere [24,25]. In brief, the Virtual
Cohort consists of over 33 000 veterans with HIV infection
treated within the national Veterans Affairs Healthcare
System from 1997 to the present. This sample identifies
veterans at the point of initiating care for HIV infection
and follows them using databases derived from the VA
National Electronic Medical Record System. Using chart
review, we have determined that 75% of those entering care
in the VA for HIV infection initiate their first course of
cART after coming to the VA.

Subjects selected and data sources

To ensure adequate follow-up time, we identified subjects
who initiated their first course of cART in the VA between 1
January 1997 and 1 August 2002. We used pharmacy data to
identify individuals initiating a minimum of three antire-
troviral medications and laboratory data to determine that
they had received a minimal evaluation (CD4 cell count, HIV-
RNA and haemoglobin) within 6 months of initiating cART.

Available data included demographic factors (age, race/
ethnicity and gender), administrative diagnostic codes
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[International Statistical Classification of Diseases and
Related Health Problems (ICD)-9 codes], routinely collected
clinical laboratory data, pharmacy data and long-term
mortality. All laboratory data were collected from the
clinical sites through the Immunology Case Registry [26].
Pharmacy data are drawn from the national VA Pharmacy
Benefits Management Package [27]. ICD-9 codes were used
to determine diagnoses of drug abuse or dependence, alcohol
abuse or dependence, and AIDS-defining illnesses. Hepatitis
C was defined as a positive antibody, qualitative or
quantitative HIV RNA, or ICD-9 codes. Hepatitis B was
defined as a positive surface antigen test or ICD-9 codes. In
all cases in which ICD-9 codes were used, two out-patient or
one in-patient code was required before the condition was
considered present. This approach improves the accuracy of
ICD-9 codes when compared with chart review [28]. The
specific codes used can be found at our website (http://
VAcohort.org). All cause mortality data using VA data
sources have been demonstrated to be accurate and complete
when compared with the National Death Registry [29,30].

Analyses

We ran univariable descriptive statistics and estimated the
association between biomarkers using Spearman rank for
continuous variables and w2 for dichotomous markers. We
then split the sample. Those who initiated treatment after 31
December 1998 were assigned to the development set and
those who initiated treatment on or before this date were
reserved for validation. We initially standardized the maximal
observation interval for both samples to 6 years, but later
conducted sensitivity analyses around this maximal survival
window. We chose a nonrandom split based on calendar time
to determine the temporal generalizability of our findings
[32]. After each model had been fully specified we used the
assigned risk estimates from the model to rank patients
according to risk from highest to lowest risk of mortality.

Development

We compared Poisson, Weibull and Cox survival models
and found that differences in distributional assumptions
over the 6-year window did not substantially alter
coefficient weights. We present Poisson analyses, as these
results are the most directly interpretable.

To facilitate the generalizability of our results, we used a
previously validated specification of HIV biomarkers from
the Antiretroviral Treatment Cohort Collaboration (ART-
CC) model. ART-CC is a carefully validated prognostic
model based upon data from cohorts in Europe and North
America [3,13,32]. It is focused on markers of HIV disease
severity and includes CD4 count (o50, 50–99, 100–199,

200–349 and � 350 cells/mL), HIV-1 RNA of five log or
more and the presence of AIDS-defining illness.

For ‘non-HIV’ biomarkers we considered only: (1) clinical
markers that are ordered as part of routine clinical manage-
ment and (2) markers that have been previously demon-
strated to be associated with mortality among patients with
HIV infection. We employed previously validated specifica-
tions of these markers consistent with major organ system
injury. For liver injury, we employed the Fibrosis Index (FIB)
4 [33]. FIB 4 uses aspartate and alanine transaminase (AST
and ALT, respectively), platelets and age to estimate likely
liver fibrosis [FIB 4: (years of age � AST)/(platelets in 109/
L � square root of ALT)]. Two thresholds of FIB 4 are
recommended: 43.25, consistent with high risk for fibrosis/
cirrhosis; and o1.45, consistent with low risk for fibrosis/
cirrhosis. For renal injury, we employed the Modified Diet in
Renal Disease (MDRD) estimation which uses age, race,
gender and creatinine to estimate creatinine clearance
[estimated Glomerular Filtration Rate (eGFR): 186.3 �
(serum creatinine� 1.154) � (age� 0.203) � (0.742 for
women) � (1.21 if African American)] [34]. Two levels of
anaemia were defined: moderate and severe (haemoglobin
10-12 and o10 g/dL, respectively). Finally, we included a
combined indicator variable for chronic hepatitis B virus
(HBV) or hepatitis C virus (HCV) infection. We created a
single indicator because 51% of those with chronic HBV
infection also had HCV infection, and coefficients for HBV
and HCV infections were similar in preliminary models.

The ART-CC model also adjusts for two demographic
factors: age � 50 years and history of injecting drug use.
Because our sample is older [3,13], we adjusted both models
for age 50–64 and � 65 years. We did not have information
available in Virtual Cohort on injecting drug use. As a
proxy, we adjusted both models for a diagnosis of substance
(drug or alcohol) abuse or dependence. We created a single
indicator for substance abuse or dependence because 67%
of those with a diagnosis of drug abuse or dependence also
had a diagnosis of alcohol abuse or dependence [35] and
coefficients in preliminary models were similar.

Proportions were compared using the w2 test. Medians
were compared using the rank-sum test. Discriminations
were compared using C statistics. The C statistic can be
interpreted as the probability that any random pair of
uncensored subjects in the data will be ranked correctly by
the index with respect to their risk of mortality.

Validation

We fitted the same models in validation data and estimated
and compared C statistics. We then combined data sets. Risk
quintiles were generated for the HIV biomarker and the
combined models. Each Poisson model (HIV, ‘non-HIV’, and
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combined) was used to generate a risk estimate for each
subject. Using each set of model estimates in turn, subjects
were ranked from highest to lowest risk and grouped into
five quintiles designated by equal numbers of mortality
events to ensure similar power to detect differences in risk.
Observed mortality rates and 95% CIs were estimated.

To determine the effect of differing survival intervals on
its discrimination, we reran the Index in both development
and validation samples censoring survival follow-up at 30
days, 6 months, 1 year, 2 years, 4 years, and 6 years in
development and validation samples. For each model, we
calculated a C statistic and compared this with published C
statistics (receiver operator characteristic area estimates)
for two commonly used prognostic indices, Acute Physiol-
ogy and Chronic Health Evaluation (APACHE) [36] and The
Charlson Comorbidity Index [37].

Missing data analyses

We fitted a logistic model predicting missing data (0 if no data
missing and 1 if at least one variable missing) and including
all variables (HIV, ‘non-HIV’, substance abuse or dependence,
age, mortality, and year of cART initiation). We used
predictions from this model to inversely weigh observations
in the development and validation sets and compared these
results with those of the complete case analyses.

Results

Of 13586 HIV-infected veterans initiating cART between 1
January 1997 and 1 August 2002 with laboratory data, 9784
(72%) had complete data (analytic sample). Development and
validation sets were clinically similar. Subjects were middle-
aged (Table 1; median age 45 years), mainly male (98%), and
predominantly black (51%). Over a third had CD4 counts
below 200 cells/mL and 18% had HIV RNA above 5 log co-
pies/mL. Diagnoses of alcohol or drug abuse or dependence
were common (31%), as were anaemia (21%), HBV infection
(12%), and HCV infection (43%). Twelve per cent had likely
liver fibrosis (FIB 443.25). Two per cent had stage IV renal
failure (eGFRo30 mL/min). AIDS diagnoses were relatively
uncommon. In pairwise comparisons, CD4 cell count, HIV
RNA and AIDS-defining illnesses were strongly associated
with haemoglobin, FIB 4, and eGFR o30mL/min (Po0.0001
for each; data not otherwise shown).

In development and validation sets, HIV and ‘non-HIV’
biomarkers were associated with mortality when modelled
separately (Table 2). In both sets, ‘non-HIV’ biomarkers, as
a group, added discrimination to the HIV model when
combined into a single index [C statistic improved from
0.68 to 0.72 in development (Po0.0001) and from 0.71 to
0.77 in validation (Po0.0001)]. In all cases, all biomarkers

retained independent associations with mortality after full
adjustment.

When data sets were combined, and quintiles of risk esti-
mated, the combined index offered improved differentiation

Table 1 Development and validation samples

Full cohort Development Validation
(n 5 9784) (n 5 4813) (n 5 4971)

Age (years)
Median (years) 45 46 44
o50 years [n (%)] 6876 (70.3) 3120 (64.8) 3756 (75.6)
50–64 years [n (%)] 2536 (25.9) 1487 (30.9) 1049 (21.1)
� 65 years [n (%)] 372 (3.8) 206 (4.3) 166 (3.3)

Gender [n (%)]
Male 9574 (97.9) 4710 (97.9) 4864 (97.9)

Race/ethnicity [n (%)]
Black 4978 (50.9) 2387 (49.6) 2591 (52.1)
White 3158 (32.3) 1476 (30.7) 1682 (33.8)
Hispanic/other 1648 (16.8) 950 (19.7) 698 (14.0)

CD4 count
Median (cells/mL) 281 243 316
o50 cells/mL [n (%)] 1225 (12.5) 806 (16.8) 419 (8.4)
50–99 cells/mL [n (%)] 732 (7.5) 440 (9.1) 292 (5.9)
100–199 cells/mL [n (%)] 1606 (16.4) 806 (16.8) 800 (16.1)
200–349 cells/mL [n (%)] 2354 (24.1) 1132 (23.5) 1222 (24.6)
� 350 cells/mL [n (%)] 3867 (39.5) 1629 (33.9) 2238 (45.0)

HIV-1 RNA
Median (log copies/mL) 3.6 4.2 3.1
45 log copies/mL [n (%)] 1795 (18.4) 1219 (25.3) 576 (11.6)

Substance addiction or abuse [n (%)]
Drugs 2458 (25.1) 1188 (24.7) 1270 (25.6)
Alcohol 2258 (23.1) 1138 (23.6) 1120 (22.5)
Either one 3055 (31.2) 1512 (31.4) 1543 (31.0)

Haemoglobin
Median (g/dL) 13.8 13.4 14
10–12 g/dL [n (%)] 1540 (15.7) 939 (19.5) 601 (12.1)
o10 g/dL [n (%)] 557 (5.7) 400 (8.3) 157 (3.2)

Hepatic measures
Hepatitis B [n (%)] 1140 (11.7) 552 (11.5) 588 (11.8)
Hepatitis C [n (%)] 4159 (42.5) 1958 (40.7) 2201 (44.2)
Hepatitis B or C [n (%)] 4675 (47.8) 2209 (45.9) 2466 (49.6)
AST (U/L; median) 34 34 34
ALT (U/L; median) 35 36 35
Platelets (103 cells/mL) 204 209 200
FIB 443.25 [n (%)] 1186 (12.1) 606 (12.6) 580 (11.7)
FIB 4o1.45 [n (%)] 5417 (55.4) 2624 (54.5) 2793 (56.2)

Renal measures
Creatinine (mg/dL; median) 1 1 1
eGFR (mL/min; median) 97 97 97
eGFRo30 [n (%)] 195 (2.0) 101 (2.1) 94 (1.9)

AIDS diagnoses [n (%)]
PJP 527 (5.4) 311 (6.5) 216 (4.4)
MAI/TB 238 (2.4) 133 (2.8) 105 (2.1)
Bacterial pneumonia 980 (10.0) 503 (10.5) 477 (9.6)
Fungal infections 190 (1.9) 112 (2.3) 78 (1.6)
AIDS cancers 322 (3.3) 164 (3.4) 158 (3.2)
Wasting 150 (1.5) 71 (1.5) 79 (1.6)
Dementia 266 (2.7) 115 (2.4) 151 (3.0)

Deaths/100 person-years 5.29 5.33 5.26
Median person-years of observation 6.47 5.87 7.76

FIB 4: (years of age � AST)/(platelets in 109/L � square root of ALT).
eGFR: 186.3 � (serum creatinine� 1.154) � (age� 0.203) � (0.742 for
women) � (1.21 if African American).
ALT, alanine transaminase; AST, aspartate transaminase; eGFR, estimated
Glomerular Filtration Rate; FIB, Fibrosis Index; MAI/TB, Mycobacterium avium
intracellulare/tuberculosis; PJP, Pneumocystis jiroveci pneumonia.
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of mortality (Fig. 1). This was most pronounced for the
highest risk groups: 4th quintile [8.5 (95% CI 8.0–9.3) vs.
12.0 (95% CI 11.0–13.1) deaths/100 person-years (PY)] and
5th quintile [15.2 (95% CI 14.0–16.6) vs. 18.7 (95% CI 17.2–
20.4) deaths/100 PY].

When biomarkers were characterized by risk quintile as
estimated by the three models, the overlapping associations
with mortality became apparent (Table 3). Despite omitting
all ‘non-HIV’ biomarkers, the HIV model identified a strong
gradient for haemoglobin, but a somewhat less pronounced
gradient in FIB 4, eGFR or viral hepatitis. Despite omitting all
HIV biomarkers, the ‘non-HIV’ model identified a strong
gradient for CD4 cell count, HIV RNA and AIDS-defining
conditions. Consistent with its improved discrimination, the
combined model improved gradients in CD4, HIV RNA and

Table 2 Adjusted Poisson models: HIV biomarkers, ‘non-HIV’ biomarkers* and combined, for (a) the development set and (b) the validation set

Development set

HIV biomarkers
(C statistic 5 0.68)

‘Non-HIV’ biomarkers
(C statistic 5 0.70)

Combined
(C statistic 5 0.72)

Initiated cART 1999–2002 (n 5 4813) IRR 95% CI IRR 95% CI IRR 95% CI

(a)
HIV RNA45 log copies/mL 1.28 1.12 1.45 1.19 1.04 1.35
CD4 50–99 cells/mL 0.79 0.65 0.96 0.76 0.63 0.93
CD4 100–199 cells/mL 0.70 0.59 0.84 0.73 0.61 0.87
CD4 200–349 cells/mL 0.57 0.48 0.68 0.65 0.54 0.77
CD4� 350 cells/mL 0.45 0.37 0.54 0.57 0.47 0.69
AIDS-defining diagnosis 1.55 1.37 1.76 1.44 1.27 1.63
Haemoglobino10 g/dL 2.34 1.97 2.77 1.65 1.38 1.98
Haemoglobin 10–12 g/dL 2.02 1.78 2.3 1.54 1.34 1.76
FIB 4� 3.25 1.67 1.44 1.93 1.62 1.40 1.89
FIB 4o1.45 0.71 0.62 0.81 0.74 0.65 0.85
eGFRo30 mL/min 1.88 1.44 2.47 2.05 1.57 2.69
Viral hepatitis 1.31 1.16 1.48 1.37 1.21 1.55

Validation set

HIV biomarkers
(C statistic 5 0.71)

‘Non-HIV’ biomarkers
(C statistic 5 0.73)

Combined
(C statistic 5 0.77)

Initiated cART 1997–1998 (n 5 4971) IRR 95% CI IRR 95% CI IRR 95% CI

(b)
HIV RNA45 log copies/mL 1.56 1.35 1.82 1.54 1.33 1.79
CD4 50–99 cells/mL 0.63 0.51 0.78 0.64 0.52 0.80
CD4 100–199 cells/mL 0.42 0.35 0.50 0.52 0.43 0.63
CD4 200–349 cells/mL 0.38 0.32 0.46 0.51 0.43 0.62
CD4� 350 cells/mL 0.24 0.20 0.28 0.36 0.30 0.44
AIDS-defining diagnosis 1.47 1.30 1.66 1.38 1.22 1.56
Haemoglobino10 g/dL 3.98 3.24 4.90 2.65 2.14 3.28
Haemoglobin 10–12 g/dL 2.13 1.86 2.44 1.66 1.44 1.90
FIB 4� 3.25 2.06 1.79 2.36 1.93 1.68 2.22
FIB 4o1.45 0.56 0.49 0.63 0.65 0.57 0.75
eGFRo30 mL/min 1.85 1.42 2.43 1.97 1.50 2.58
Viral hepatitis 1.19 1.05 1.34 1.25 1.11 1.42

Reported IRRs are from nested Poisson models restricted to those patients with all variables complete.
Po0.00001 for addition of non-HIV biomarkers to HIV biomarkers.
All models also include two age variables (age 50–64 years and age � 65 years) and a combined variable for alcohol or drug abuse and dependence.
See Methods section for rationale.
FIB 4: (years of age � AST)/(platelets in 109/L � square root of ALT).
eGFR: 186.3 � (serum creatinine� 1.154) � (age� 0.203) � (0.742 for women)� (1.21 if African American).
ALT, alanine transaminase; AST, aspartate transaminase; cART, combination antiretroviral therapy; CI, confidence interval; eGFR, estimated Glomerular
Filtration Rate; FIB, Fibrosis Index; IRR, incident rate ratio.
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Fig. 1 Observed mortality rate by quintiles of risk estimated using
HIV only and combined HIV and ‘non-HIV’ biomarkers.
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AIDS-defining conditions compared with the ‘non-HIV’
model and gradients in haemoglobin, FIB 4, eGFR and viral
hepatitis compared with the HIV model.

When observations were inversely weighted by association
with missing data, calendar year included in the model, and
observations no longer censored at 6 years, results were
similar. In combined data, the index that included both HIV
and ‘non-HIV’ biomarkers improved the discrimination of
HIV biomarkers alone (C statistic improved from 0.69 to 0.74,
Po0.0001). While individual coefficient weights varied
somewhat from those of the models estimated without
inverse weighting by the propensity for missing data, all
biomarkers retained strong independent associations of
similar magnitude and direction with mortality (Po0.0001).

Finally, the discrimination of the index (C statistic) for
mortality depended upon the survival interval. Discrimina-
tion for the VACS Index was greater for shorter survival
intervals (Fig. 2; 30-day C statistic 0.86, 95% CI 0.80–0.91),
but good for intervals of up to 8 years (C statistic 0.73, 95%
CI 0.72–0.74).

Discussion

Although associated with death from HIV disease progres-
sion, CD4 cell count, HIV RNA, and AIDS-defining
conditions fail to capture important effects of HIV and its
treatment on morbidity and mortality [38–40]. After
accounting for CD4 cell count, HIV RNA and AIDS-
defining conditions, the routine clinical biomarkers of

anaemia, liver injury, renal injury, and chronic viral
hepatitis substantially improve discrimination of mortality
among HIV-infected veterans initiating cART. We have
validated these results in independent data and demon-
strated that they are robust adjusting for missing data and
across differing survival intervals. ‘Non-HIV’ biomarkers
add independent information to risk estimation of all cause
mortality in combination with HIV biomarkers and are
independently associated with immunodeficiency (CD4 cell
count and AIDS-defining conditions) and HIV RNA.
Finally, by combining HIV and ‘non-HIV’ markers into a
single weighted index, we can recognize the likely complex
effects of HIV and its treatment on HIV and ‘non-HIV’
disease, and provide an improved risk estimation of all

Table 3 Biomarkers characterized by risk quintile for each model

n Deaths

Deaths/100 PY Age� 65
years
(%)

Substance
CD4
(cells/lL)

HIV RNA
(log
copies/mL)

AIDS-defining
conditions
(%)

HGB
(g/dL)

FIB 44
3.25 (%)

eGFR
o30 mL/min
(%)

Viral
hepatitis
(%)95% CI

ab/dep
(%)

HIV and ‘non-HIV’ combined quintiles
1 4379 513 2.2 2.0, 2.3 7.0 20.1 419 2.9 5.7 14.5 0.0 0.1 29.0
2 2011 513 5.1 4.6, 5.5 2.9 38.2 263 3.7 21.9 13.8 0.7 0.4 58.6
3 1510 513 7.2 6.6, 7.8 6.2 35.2 171 4.2 36.4 12.9 18.4 2.2 60.0
4 1057 513 12.0 11.0, 13.1 8.6 44.2 122 4.7 43.3 12.1 38.4 3.5 67.6
5 827 514 18.7 17.2, 20.4 12.0 49.2 48 5.1 60.7 10.8 59.0 14.0 73.4
HIV quintiles
1 3796 513 2.5 2.3, 2.8 0.0 19.1 466 2.7 3.7 14.5 5.9 1.2 42.5
2 2089 513 4.8 4.4, 5.2 0.0 32.4 262 3.7 11.9 13.9 11.5 1.8 50.9
3 1599 513 6.7 6.2, 7.3 6.6 42.2 163 4.0 25.5 13.4 16.9 2.3 54.7
4 1365 513 8.5 8.0, 9.3 10.8 37.1 111 4.6 52.5 12.6 17.4 2.9 47.9
5 935 514 15.2 14.0, 16.6 12.7 50.5 26 5.3 73.5 11.6 23.1 3.7 50.4
‘Non-HIV’ quintiles
1 4051 513 2.3 2.1, 2.6 0.0 23.3 365 3.2 13.7 14.4 0.0 0.0 29.2
2 2083 513 4.9 4.5, 5.4 2.9 20.1 268 3.7 21.8 14.0 0.0 0.4 43.6
3 1664 513 6.4 5.9, 7.0 7.0 48.3 238 3.9 31.4 12.9 4.0 0.8 65.1
4 1104 513 11.0 10.1, 12.0 4.4 42.4 192 4.1 29.3 12.5 52.3 3.9 78.0
5 882 514 16.4 15.1, 17.9 16.6 47.6 142 4.4 39.3 10.8 61.5 14.6 72.5

ab/dep, abuse/dependence; CI, confidence interval; eGFR, estimated Glomerular Filtration Rate; FIB, Fibrosis Index; HGB, haemoglobin; PY, person-years.
FIB 4: (years of age � AST)/(platelets in 109/L � square root of ALT).
eGFR: 186.3 � (serum creatinine� 1.154) � (age� 0.203) � (0.742 for women) � (1.21 if African American).
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Fig. 2 Discrimination of Veterans Aging Cohort Study (VACS) Index
(C statistic) by survival interval (n 5 9748).
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cause mortality. This is the first essential step towards an
integrated surrogate endpoint for research and a poten-
tially useful risk index for clinical management.

Our study has unique advantages over previously
published work. We had sufficient sample size and long-
itudinal follow-up to analyse all cause mortality among a
sample of patients with uniform data sources and methods
of data collection and near complete mortality ascertain-
ment [29,30]. We were able to study an older population,
ensuring the relevance of this work to the rapidly growing
population of older patients with HIV infection [39].
Importantly, we were able to demonstrate that our results
generalized to an independent sample before and after
accounting for missing data.

Our study also has limitations. The first course of cART
within the VA may not be the first course of cART. We
conducted an eight-site chart review (n 5 3250) demonstrat-
ing that 75% of veterans are cART naı̈ve at VA entry, but
some individuals probably had prior cART exposure.
Additionally, there were few women in the sample and we
cannot determine whether our findings generalize beyond
men. Future work is planned that will explore whether
additional clinical data, laboratory data, and time-updated
analyses improve the index. Data on smoking, wasting,
cancer diagnoses, cardiovascular and cerebral vascular
disease, pulmonary disease, microalbumin, anaemia type
and short-term response to cART may all further improve the
differentiation of mortality risk. Additionally, when more
standardized and clinically available, markers of inflamma-
tion and immune senescence may prove valuable. It will also
be useful to test the discrimination of the index for other
important patient outcomes including specific causes of
death, functional compromise and hospitalization.

Nevertheless, the VACS Index currently predicts mortality
as well as two established prognostic indices when evaluated
over comparable survival intervals (a major determinant of
prognostic accuracy) [31,39]. For 30-day survival, the index
achieved C statistics of 0.86 (95% CI 0.80–0.91), consistent
with the range of performance of the APACHE III, a
prognostic index for short-term hospital or 30-day intensive
care unit survival (C statistics between 0.70 and 0.86) [40–
42]. For 1-year survival, the VACS index achieved a C
statistic of 0.81 (95% CI 0.80–0.83), which compares
favourably to that for the Charlson Index (C statistic 0.70–
0.77) [43]. It is important to note that the index discriminated
reasonably well over all survival intervals analysed, which
suggests that it offers a reasonable risk assessment of both
short- and long-term mortality [31].

Of note, some question whether findings among veterans
apply to nonveteran populations. While veterans in care
generally do experience higher rates of mortality, comorbid
disease, and substance use than the general population,

these differences are less pronounced among clinical
populations of veterans and nonveterans with HIV infec-
tion [6,8,44,45]. Finally, while it would be interesting to
consider the performance of the index based upon cause of
death, we caution that the primary consideration must be
all cause mortality. As we have seen from the SMART
study, substantial morbidity and mortality previously
classified as ‘non-AIDS’ may in fact be caused by HIV
disease progression.

Covariance among substance use, anaemia, viral hepatitis
and liver injury probably explains why the association
between substance abuse and dependence and mortality was
mitigated in adjusted models. By adjusting for liver injury, the
association between viral hepatitis and mortality was reduced,
but not eliminated. This suggests additional mechanisms of
injury for viral hepatitis such as chronic inflammation [46]. Of
note, we used a diagnosis of substance abuse or dependence.
We did not have information on injecting drug use
specifically, which has been shown to be associated with
mortality [11,32]. As we used the same adjustment for
substance use in all models, the comparison between HIV
biomarkers and ‘non-HIV’ biomarkers should remain valid.

As expected, HIV and ‘non-HIV’ biomarkers were strongly
interrelated. We recommend against over-interpretation of
individual weights in the index. Instead, emphasis should be
upon the risk estimated by the full index. This estimate of
overall risk is less subject to the problems of variation that
can undermine the utility of a single biomarker [47]. Finally,
while clinicians have been slow to adopt complex prognostic
indices, preferring simplified algorithms, simplified systems
compromise the power, precision and calibration of prog-
nostic models estimated on large samples [48–50]. The
availability of hand-held personal data assistants (PDAs) and
the adoption of electronic health systems should overcome
data and computational barriers to the use of these more
accurate and generalizable models [31].

This study represents an essential step towards the
development of a combined index for survival among
those in treatment with HIV infection. We have shown that
‘non-HIV’ biomarkers of anaemia, liver disease, renal
disease and viral hepatitis add important mortality risk
discrimination to HIV markers and are associated with
immunodeficiency (CD4 cell count and AIDS-defining
illnesses) and HIV RNA. The next steps include testing its
performance in nonveteran populations and in women, and
its longitudinal response to treatment effects [47,51,52]. We
need to determine whether other biomarkers and non-HIV
clinical diagnoses associated with immunodeficiency and
chronic inflammation improve the calibration and dis-
crimination of the model. It will also be useful to test the
discrimination of the index for other important patient
outcomes, including specific causes of death, functional
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compromise and hospitalization. These evaluations will
probably suggest additional variables to improve the index.
Once more completely validated, the VACS Index may offer
a superior prognostic index and integrated surrogate
endpoint for clinical management and research.

Disclaimer: The views expressed in this article are those
of the authors and do not necessarily reflect the position or
policy of the Department of Veterans Affairs.

Funding: This study was funded by the National Institute
on Alcohol Abuse and Alcoholism (2U10 AA 13566).
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