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The C–C chemokine receptor 5 (CCR5) is expressed on

potential human immunodeficiency virus (HIV) target cells and

serves as the predominant co-receptor for viral entry during

initial transmission and through the early stages of infection. A

homozygous D32 mutation in the CCR5 gene prevents CCR5

cell surface expression and thus confers resistance to infection

with CCR5-tropic HIV strains. Transplantation of hematopoietic

stem cells from a CCR5D32/D32 donor was previously

successful in eliminating HIV from the recipient’s immune

system, suggesting that targeted CCR5 disruption can lead to

an HIV cure. Therefore, intense work is currently being carried

out on CCR5 gene-editing tools to develop curative HIV

therapy. Here, we review the natural function of CCR5, the

progress made on CCR5 gene editing to date and discuss the

current limitations.
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Introduction
Current standard therapy for human immunodeficiency

virus (HIV) infection requires the lifelong daily adminis-

tration of a combination of antiretroviral drugs (combina-

tion antiretroviral therapy; cART). Although therapeutic

control of viral replication allows the immune system to

partially restore and delays disease progression, the cure

of HIV infection remains unachievable with the use of the

currently available drugs. Individuals who are naturally

homozygous for the CCR5 gene variant D32 are resistant

to CCR5-tropic HIV infection because of the lack of

cellular C–C chemokine receptor 5 (CCR5) surface ex-

pression [1]. Previously, we reported the cure of HIV

infection in a patient who received hematopoietic stem

cells from a donor with this homozygous D32 gene variant
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[2��]. After transplantation and discontinuation of cART,

HIV became undetectable and CD4+ T cell counts nor-

malized, demonstrating effective protection from HIV

replication [2��,3��]. Unfortunately, this outcome could

not be repeated in a later study [4�]. The first case has

nevertheless brought a lot of attention to the curative

potential of treatment strategies targeting the CCR5 gene

in HIV-infected patients. Consequently, new technologies

for gene editing have been developed over the last few

years that aim to mimic natural CCR5 deficiency. In this

review, we describe the physiological role of CCR5, the

recent advances made in developing CCR5-modifying

methods and discuss their application towards HIV therapy.

Natural immune functions of CCR5
The chemokine receptor CCR5 is a seven-transmem-

brane segment protein and can interact with several

proinflammatory C–C motif chemokines that are typically

released as part of innate or adaptive immune responses.

Many of these chemokines are also capable of binding to

other chemokine receptors, whereas chemokine (C–C

motif) ligand 4 (CCL4) appears to be largely specific

for CCR5 [5]. The most potent agonist of human

CCR5 yet described is CCL3-like 1 (CCL3L1) [6].

CCR5 is naturally expressed on the surface of a wide

range of leukocytes including memory/effector T cells,

natural killer cells, B cells, monocytes, and antigen-pre-

senting cells such as dendritic cells and macrophages.

Interaction of surface CCR5 with agonist chemokines

induces intracellular signaling pathways, which (i) medi-

ate leukocyte migration along the chemokine gradient to

the site of inflammation and (ii) enhance local inflamma-

tory immune responses by stimulating the proliferation

and effector molecule secretion of leukocytes. CCR5 is

thus involved in the regulation of cell migration and local

immune activation. For completeness, it should be noted

that CCR5 is also expressed on non-hematopoietic cells

including osteoclasts, fibroblasts, vascular endothelium,

epithelium and vascular smooth muscle cells, liver cells,

and neurons where it may have other physiological func-

tions that are not directly related to immune response [7].

CCR5 deficiency and natural HIV resistance
CCR5 is one of the major co-receptors for HIV entry into

CD4+ target cells. A natural occurring 32-base pair dele-

tion in the CCR5 open reading frame (CCR5D32) intro-

duces a premature stop codon and generates a shortened

form of the protein that does not appear on the cell

surface. The allelic frequency of the CCR5D32 deletion

varies in populations from different ethnic groups. In
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African and Asian people CCR5D32 is nearly non-exis-

tent, while in Caucasians, the frequency of the CCR5D32

allele is 10–20% and the prevalence of the homozygous

mutation is 1–2% [8–10]. The homozygous genotype

(CCR5D32/D32) leads to permanent absent cell surface

expression of CCR5 and mediates resistance to HIV

strains that use CCR5 for cell entry [11,12]. These obser-

vations have inspired the development of anti-HIV ther-

apies that interrupt the interaction between the virus and

CCR5.

Individuals with natural CCR5 deficiency are largely in

healthy clinical conditions, except for impaired immune

responses to some pathogens [13–16]. Absence of CCR5

surface expression may also exert a protective effect in

inflammatory conditions including atherosclerosis and

related cardiovascular disease, arthritis, and endotoxemia

because of a defect in leukocyte and monocyte/macro-

phage trafficking [17–19]. In general, CCR5 seems to be

dispensable for the proper function of the immune sys-

tem, turning it into an excellent target for HIV therapy

including cure approaches.

HIV cure by CCR5D32/D32 stem cell
transplantation
Evidence for the curative potential of CCR5 disruption

in HIV-infected persons comes from the success in
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eliminating HIV infection by allogeneic transplantation

of naturally CCR5-deficient hematopoietic stem cells in a

patient with long-known HIV infection and newly

diagnosed acute myeloid leukemia that we have first

reported about six years ago [2��,3��]. After depletion

of the patient’s CCR5D32/wild-type immune system,

CCR5D32/D32 donor progenitor cells engrafted, expand-

ed, and differentiated into mature lymphoid and myeloid

cells that are resistant to HIV infection via CCR5 [2��]
(Figure 1). The patient remained off cART following the

transplantation and HIV in peripheral blood and certain

tissues remained continuously undetectable. Today, this

patient is regarded as cured of HIV infection and known

as the ‘Berlin patient’. Because of this remarkable success

in clearing HIV from the immune system, permanent

replacement of CCR5-expressing cells by CCR5-defi-

cient cells is considered as the most promising approach

to efficiently interrupt the interaction of HIV with its host

cells. However, transplantation of naturally resistant do-

nor cells for curative HIV therapy cannot find widespread

application in clinical practice because allogeneic stem

cell transplantations themselves are risky, with a 40–55%

mortality rate [20–23], and are therefore only ethically

acceptable in cancer patients without treatment alterna-

tives. Also, the low prevalence of the CCR5D32/D32 gene

variant in the general population limits the availability

of naturally CCR5-deficient donor cells for stem cell
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transplantation. Alternative methods that mimic natural

CCR5 deficiency and are broadly applicable to humans

are therefore needed.

Artificial CCR5 deficiency
In theory, there are several possible ways to achieve

artificial CCR5 deficiency: (i) extracellular blocking of

CCR5 on HIV target cells, (ii) post-transcriptional down-

regulation of CCR5 gene expression by RNA interfer-

ence-mediated gene silencing (knockdown), or (iii) per-

manent disruption of the CCR5 gene (knockout).

Blocking of cell surface CCR5 by exogenous drugs and

gene silencing by RNA interference methods can reduce

but not eliminate the CCR5 function as HIV coreceptor,

and therefore can only serve as a supplement to the

conventional anti-HIV therapy. By contrast, gene-editing

methods change the genetic code and can provide a

complete and irreversible elimination of gene function.

In case of the CCR5 gene, this would create a genetic

resistance to CCR5-tropic HIV infection. Therefore,

CCR5-targeted gene-editing methods have gained con-

siderable attention in the field of HIV cure research.

Host genome editing
Novel technologies that enable site-specific changes in

the genetic code include zinc finger nucleases (ZFNs),

transcription activator-like effector nucleases (TALENs),

and the clustered regularly interspaced short palindromic

reapeats (CRISPR)-associated protein 9 (Cas9) systems.

Currently the most widely used system in HIV-related

human gene-editing studies is the ZFN system [24].

ZFNs are synthetic restriction enzymes composed of a

target-specific zinc finger DNA-binding domain and an

endonuclease domain that allow the sequence-selective

cleavage of genomic target DNA [25,26]. After cleavage,

cellular DNA repair pathways complete the precise edit.

ZFNs can be used to disrupt the CCR5 locus and allow the

de novo generation of CCR5-deficient cells [27]. Thereby,

biallelic CCR5 gene disruption completely eliminates

CCR5 surface expression, whereas monoallelic gene mod-

ification potentially reduces the molecule surface density.

Most frequently used cell types for gene editing-based

modification are CD4+ T cells and CD34+ hematopoietic

stem cells. In theory, in the presence of CCR5-using viral

strains, modified CD4+ T cells provide a pool of HIV

resistant cells with a survival advantage over unmodified

cells and, consequently, expand within the recipient’s

immune system. Modified hematopoietic stem cells have

the added advantage of continuously producing several

distinct progeny cell types including HIV resistant mono-

cytes/macrophages and dendritic cells. It has been

demonstrated that application of CCR5-targeted ZFNs

leads to 17–25% gene disruption in human stem cells

and disrupts 50% of CCR5 alleles in primary human

CD4+ T cells, whereby the frequency of biallelic gene

disruption within the pool of modified cells varied be-

tween 33 and 40% [28�,29�,30�]. In immunodeficient
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mice, transplantation of total populations of human

ZFN-treated cells led to the reduction of HIV levels

[28�,30�]. Another study demonstrated safety and feasibil-

ity of ZFN-CCR5-modified autologous CD4+ T cell infu-

sions in HIV-infected patients [31��]. More recently, an

optimized ZFN producing CCR5 modifications within the

D32 region has been designed that confers high resistance

against CCR5-tropic HIV infection with no significant off-

target activity [32]. Collectively, these studies have estab-

lished the artificial CCR5 gene disruption by ZFNs sys-

tems followed by autologous cell transplantation as a

reasonable and promising approach for the development

of new strategies for HIV treatment. Consequently several

trials are currently ongoing, as outlined below (Table 1).

Compared to ZFN systems, TALEN and CRISPR tech-

nologies are still in earlier stages of development. How-

ever, first promising results for CCR5 modification using

TALEN or CRISPR/Cas9 come from animal models and

human cell studies [33–35] and indicate that these systems

may become useful tools for the production of CCR5-

deficient cells in the future. Interestingly, TALEN

showed much lower cytotoxity and significantly lower

off-target activity than ZFNs [33].

Clinical trials
We searched http://clinicaltrials.gov/for clinical trials

of the application of CCR5-targeted gene editing in

HIV-infected patients. A summary is outlined in

Table 1. Target cells for ZFN-mediated CCR5 gene

disruption used in all of these trials are autologous

CD4+ T cells. The study designs focus on various con-

ditions, which could affect the persistence of modified

cells, including those aiming at increasing the engraft-

ment of reinfused cells through the administration of low

non-myeloablative doses of cyclophosphamide.

A recently published Phase I study describes the feasi-

bility and safety of CCR5-modified autologous CD4+ T

cell infusions [31��]. In this case series study, twelve

aviremic HIV-infected patients on cART received a

single-dose infusion of ex vivo expanded, autologous

CD4+ T cells that had been modified at the CCR5 gene

by ZFNs. One serious adverse event occurred in a single

patient who developed fever, chills and joint/back pain

within one day after infusion. All study patients showed a

significant increase in the peripheral CD4+ T cell count at

one week post-infusion and cells carrying a modification

in one or both alleles of the CCR5 gene constituted, on

average, around 14% of circulating CD4+ T cells. Six of

the patients underwent treatment interruption from week

4 to 16 post infusion. There was a rapid viral rebound in all

six patients and treatment interruption had to be termi-

nated in two of these patients due to high viral loads. In

patients who completed the treatment interruption peri-

od, the viral load decreased continuously from the peak

level during the absence of cART. Interestingly, one

patient had a relatively low and late peak level of viremia
www.sciencedirect.com
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Table 1

Clinical trials of CCR5 gene editing-based cell therapy for the treatment of HIV-infected persons.

Intervention Phase Recruited subjects (n) Outcome measures Status

(ClinicalTrials.gov

identifier)

Institution/

Company

Single dose of ZNF-modified

autologous CD4+ T cells

I Patients on cART with

or without treatment

failure (12)

PR: Safety, Side-effect

profile

SRY: Effect on viral load

and T cells

Published [31��]

(NCT00842634)

University of

Pennsylvania,

Albert Einstein

College of

Medicine,

Sangamo

Biosciences

Escalating doses of ZNF-modified

autologous CD4+ T cells

I Patients on cART with

or without heterozygosity

for CCR5D32 mutation (19)

PR: Safety

SRY: Long-term

persistence and activity

of modified cells

Completed

(NCT01044654)

Sangamo

Biosciences

Single dose of ZFN-modified

autologous CD4+ T cells

I/II Untreated viremic

patients (21)

PR: Safety and

tolerability

SRY: Persistence of

modified cells,

Effect on HIV and

CD4+ T cells

Completed

(NCT01252641)

Sangamo

Biosciences

Single dose of ZFN-modified

autologous CD4+ T cells with

and without cyclophosphamide

conditioning/pretreatment

I Aviremic patients on

cART with or without

CCR5D32 mutation (15)

PR: Safety Recruiting

(NCT02388594)

University of

Pennsylvania,

National

Institute of

Allergy and

Infectious

Diseases

Escalating doses of cyclophosphamide

administered before single dose

infusion of ZFN-modified

autologous CD4+ T cells

I/II Aviremic patients on

cART (26)

PR: Safety

SRY: Engraftment

of modified cells,

Effect on HIV and

CD4+ T cells

Recruiting

(NCT01543152)

Sangamo

Biosciences

PR: primary outcome; SRY: secondary outcome.
and then controlled HIV to an undetectable level until

week 16. This patient was subsequently found to be

heterozygous for the CCR5D32 mutation. It is therefore

likely that the rate of biallelic knockout of the CCR5 gene

and consequent complete disruption of CCR5 surface

expression in the reinfused pool of CD4+ T cells was

higher in comparison with the remaining patients. Effec-

tive viral control thus probably depends on the degree of

biallelic disruption of the CCR5 gene, highlighting the

need for strategies that ensure highly efficient CCR5 gene

knockout on a single cell level. However, in all twelve

patients total CD4+ T cells and numbers of gene-modi-

fied progressively declined during the treatment inter-

ruption of 12 weeks. Gene-modified cells remained

detectable during the long-term follow up and repre-

sented <2% of CD4+ T cells in the peripheral blood

after the longest observation period of 42 months.

Conclusions
Some promising progress has been made in gene-editing

technology since proof-of-principle for CCR5-deficient

stem cell therapy in HIV infection was first published in

2009 [3��]. The efficiency of biallelic CCR5 gene disruption

seems to need further improvement in order to achieve an

HIV-resistant cell pool with high effectiveness. The critical
www.sciencedirect.com 
threshold for the number of reinfused CCR5-deficient cells

required for effective viral control is unknown at this point

but, if efficient enough, CCR5-directed manipulation of

the host immune system may indeed have potential as

curative HIV therapy. However, while disabling replication

of CCR5 using viral strains, this manipulated host immune

system would still be susceptible for C–X–C chemokine

receptor 4 (CXCR4)-using HIV variants, which usually

emerge during later stages of HIV infection, are associated

with high viral loads, and can replicate in the absence of

CCR5 expression. Consequently, therapeutic application

of CCR5-disrupting gene-editing methods will be limited

to HIV-infected persons not harboring CXCR4-using viral

strains. Manipulation of the CXCR4 gene locus in humans is

generally problematic as it can have serious consequences

as a result of its indispensable immunological functions

[36,37]. Also, in the setting of reinfused ex vivo CCR5-

modified CD4+ T cells, other cell types such as monocytes,

macrophages, and dendritic cells remain potent target

populations of CCR5-using HIV and facilitate ongoing viral

replication, which in turn enables the evolution and out-

growth of CXCR4-using viral variants. One approach to

create a lifelong source of both lymphoid as well as myeloid

HIV resistant immune cells would be to infuse CCR5-

disrupted autologous hematopoietic stem cells. However,
Current Opinion in Virology 2015, 14:24–29



28 Engineering for viral resistance
efficient engraftment of stem cells requires the precondi-

tioning with agents known to induce a broad range of

complications including toxic injuries, severe cytopenias,

and to increase the risk for the development of malignancies.

Finally, elimination of the latent viral reservoir remains to

be addressed. Long-lived cells latently infected with

replication-competent HIV will continue to produce vir-

ions even after engraftment of genetically modified cells.

Therefore, residual non-modified CD4+ cells would still

be significant sources of viral growth that may eventually

lead to the emergence of CXCR4-using HIV variants and

consequent therapeutic failure. In that context, compar-

ing the outcomes of the recently published case of an

HIV-infected patient who experienced a rapid viral re-

bound after allogeneic CCR5D32/D32 stem cell trans-

plantation [4�] and the Berlin patient case [2��] is

interesting. Based on the dramatic difference in the out-

comes, it can be speculated that the viral reservoir dif-

fered in size, distribution and/or quality between the two

patients and, as a result, was more efficiently eliminated

in the Berlin patient. Homozygosity for the CCR5D32

mutation that was present in the HIV-infected Berlin

patient before the transplantation could have been bene-

ficial in this regard because monoallelic CCR5 expression

in HIV target cells may have a protective effect against

the formation and/or stability of viral reservoirs [38,39].

This is also suggested by the two cases of HIV-infected

patients in Boston who were heterozygous for the

CCR5D32 mutation before they received CCR5 wild-

type stem cells and converted to full donor chimerism

[40]. Although HIV typically rebounds from persistent

viral reservoirs within days of cART interruption after

stem cell transplantation [41,42], HIV remained unde-

tectable for three and 8 months after cART discontinua-

tion in the two Boston patients suggesting that the

CCR5D32/wt immune system may harbor reduced reser-

voirs of replication-competent HIV [43]. Fortunately, our

knowledge about the biology of the viral reservoir con-

tinually improves and the development of therapeutic

strategies aimed at the elimination of the latent HIV

reservoir is progressing [44,45].
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