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The mucosal barrier plays an integral function in human health

as it is the primary defense against pathogens, and provides a

critical transition between the external environment and the

human internal body. In the context of HIV infection, the most

relevant mucosal surfaces include those of the gastrointestinal

(GI) and genital tract compartments. Several components help

maintain the effectiveness of this mucosal surface, including

the physical anatomy of the barrier, cellular immunity, soluble

factors, and interactions between the epithelial barrier and the

local microenvironment, including mucus and host microbiota.

Any defects in barrier integrity or function can rapidly lead to an

increase in acquisition risk, or with established infection may

result in increased pathogenesis, morbidities, or mortality.

Indeed, a key feature to all aspects of HIV infection from

transmission to pathogenesis is disruption and/or dysfunction

of mucosal barriers. Herein, we will detail the host–pathogen

relationship of HIV and mucosal barriers in both of these

scenarios.
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HIV transmission
Extensive research has been dedicated to the develop-

ment of HIV prevention intervention strategies. A signif-

icant challenge in developing these interventions is an

incomplete understanding of correlates of sexual trans-

mission including the role of mucosal inflammation. What
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is exceedingly clear is that increased mucosal inflamma-

tion enhances the rate of sexual transmission of HIV at

mucosal surfaces [1–3]. Given the recent failure of the

HVTN505 [4] and STEP [5] vaccine trials, where in-

creased HIV transmission risk was observed in vaccine

recipients, understanding the role of these mechanisms is

a growing concern for the HIV prevention field. Recent

studies have helped increase our understanding of how

sexual activity, inflammation, and host microbiota can

influence the mucosal barrier and will be the focus of the

transmission portion of this review (Figures 1 and 2a).

Physical and biological barriers for HIV at mucosal

surfaces

Routes for HIV transmission include the vagina (and

other compartments in the female genital tract; FGT),

anus, rectum, and penis/foreskin. These surfaces have

both anatomical (epithelial barrier and secreted mucus)

and biological barriers (immune cells and antimicrobial

factors) to resist viral infection. Per coital frequency of

HIV transmission is quite low; approximately 0.1% for

unprotected receptive vaginal intercourse and 1.4% for

unprotected receptive anal intercourse [6], which demon-

strates the effectiveness of these barriers against HIV.

The FGT is protected from virus penetration by a multi-

layered squamous and columnar epithelium in the ecto-

cervix/vaginal vault and endocervix, respectively. On the

other hand, the rectal compartment (and other GI sites) is

only comprised of a single layer columnar epithelium

likely contributing to higher transmission rates. Epithelial

integrity at all sites is mediated by protein structures

acting to adhere cells to one another (i.e. tight and

adherens junctions) or to the extracellular matrix. While

the FGT is not considered keratinized, it also contains a

layer of flattened differentiated epithelial cells called the

stratum corneum which provides further physical and

biological barriers to microorganisms [7]. On top of all

mucosal surfaces is a layer of secreted mucus, which

contains hundreds to thousands of biologically relevant

soluble proteins, including immune factors and antimi-

crobial agents [8], mucins [9] and antiproteases [10,11],

which provide immune defense and anti-inflammatory

protection against epithelial damage. In addition, mucus

itself provides a substantial physical barrier against HIV

migration and penetration [12,13].

In order for HIV transmission to occur, infectious virions

or infected cells from the donor must cross these barriers

to find a susceptible cell in the host. HIV can penetrate as

much as 10 mm into the squamous epithelium in the FGT
www.sciencedirect.com
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Figure 1
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Similar mechanisms for transmission and pathogenesis in HIV infection.
where target cells reside, which is significantly increased

upon tight junction disruption, and migration varies be-

tween individuals [14�]. HIV preferentially infects CD4+

T-cells co-expressing CCR5 at mucosal sites [1] and

particularly those that are HIV-specific [15] or activated

[16�]. Not all CD4+ T-cells are equal, however, and

T-helper type 17 (Th17) CD4+ T-cells [17�], as well

as activated CD4+ T-cells expressing a4b7 or a4b1 [18],

are highly susceptible cells in the FGT compartment.

However, the exact mechanism by which HIV infects

rectal tissue is uncertain. The rectal lamina propria con-

tains abundant CD4+CCR5+ T-cells that express multi-

ple markers of cell activation, thus key targets for HIV

[19]. A network of dendritic cells (DCs) resides within the

distal rectum that could facilitate transfer of HIV to target

T-cells [20,21,22�]. Another intriguing possibility is that

HIV triggers DCs to migrate between rectal epithelial

cells, capture virus, and transfer it to activated T-cells in

the lamina propria [23]. Therefore immunological factors

that affect the number of available target cells, activation

status, their accessibility, and/or dissemination, could

affect the likelihood of infection.

Mucosal inflammation

Inflammatory responses are largely initiated by epithelial

cells, through activation of pattern recognition receptors,

to secrete soluble defense factors (antimicrobial peptides,

AMPs) and cytokines to stimulate a response from im-

mune cells. HIV can turn this process to its advantage.

Indeed, an inflammatory cascade at the mucosal level

following virus exposure is required for the establishment

of productive viral infection [24]. Although it would seem

logical that increase secretion of AMPs that can inhibit

HIV infectivity in vitro would have the same effect in
vivo, paradoxically this is not the case. In fact, elevated

levels of a-defensins at mucosal surfaces are associated
www.sciencedirect.com 
with increased risk of HIV infection [25,26], presumably

exacerbating risk by recruiting target cells for infection

and/or increasing the susceptibility of cells [27,28]. In

addition, increased levels of pro-inflammatory cytokines/

chemokines are associated with increased rates of HIV

acquisition [29,30��]. Recently, Masson et al. demon-

strated that in the CAPRISA-004 trial, a 3-fold increased

risk of HIV infection was observed in women who had

elevated levels of at least five mucosal pro-inflammatory

cytokines, including MIP-1a, IL-8, MIP-1b, IL-1b,

IL-1a, and TNF-a [30��]. Proteomic analysis by

Arnold/Burgener et al. demonstrated this pro-inflamma-

tory cytokine profile is linked with increased neutrophil

protease levels, barrier disruption, and increased frequen-

cy of cervicovaginal CD4+ T-cells [31��]. Thus, a model is

proposed that mucosal barrier disruption via neutrophil

proteases may drive immune cell migration and frequen-

cy, and increase virion access to susceptible cells, and thus

the risk of HIV acquisition.

Conversely, reduced inflammation and immune activation

at mucosal surfaces are associated with HIV protection.

Much of this insight has been gained from studying HIV

exposed seronegative (HESN) individuals. Decreased

immune activation [32], characterized by reduced sys-

temic CD4+ T-cell gene expression [33] coupled with

lowered mucosal cytokine/chemokine expression (MIG,

IP10, and IL1a) [34] may collectively limit target cell

availability and activation and hence reduced risk of

infection. Alterations in the mucosal proteome, such as

elevated levels of protective serpins, elafin and other

antiproteases [35–37], are also associated with protection.

Importantly, these factors are essential for reducing and

controlling inflammatory responses [38,39,10,40], particu-

larly due to the direct inhibition of proteases, which are

important for immune cell migration, activation, and
Current Opinion in Immunology 2015, 36:22–30
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Figure 2
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Proposed mechanisms of barrier breakdown and inflammation in (a) HIV transmission and (b) HIV pathogenesis.
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tissue barrier breakdown [41]. Indeed, the absence of

specific serpins can lead to increased levels of activated

Th17+ cells at mucosal surfaces [42], which can be targets

of initial infection for HIV [43��]. Furthermore, these

antiproteases and their cleavage products have antiviral

activity [10,44–46] but are not inherently pro-inflamma-

tory. Therefore it is clear that soluble factors within

mucosa are important players in affecting inflammation

status of mucosal surfaces and the likelihood of HIV

transmission.

Sexual activity and sexually transmitted infections (STIs)

Sexual activity results in increased inflammation and thus

may allow an opportunity for HIV transmission [47]. The

act of coitus itself can result in microabrasions in the

mucosal surface, resulting in wound healing processes and

increased vascularity, infiltration and recruitment of im-

mune cells, and increased inflammatory cytokines and

proteins [48–50]. In particular, wound healing is associat-

ed with neutrophil recruitment, which may increase

susceptibility to HIV infection via protease production

(described above) [51,52]. Semen itself is highly basic and

increases vaginal pH, which may in turn alter the protec-

tive mucus layer in the FGT [47,53]. Semen exposure

increases pro-inflammatory cytokines in the FGT (such as

IL-6, IL-8 and IL-1b) compared to protected coitus or

abstinence [54], and is associated with increased CD4+

T-cells and macrophages shortly after coitus [54,55].

Interestingly, progressive sexual exposure, as observed

in sex workers from Kenya, results in decreased mucosal

immune activation over time [56], suggesting that fre-

quent sexual activity may induce tolerance and precede a

reduced immune activation phenotype. Endogenous sex

hormones during luteal phase of menses and injectable

contraceptives have also been associated with increased

HIV infection risk [4,57–63], where progesterone or pro-

gestin-based contraceptives may affect HIV target cell

levels or host innate immune factors. Recent studies also

implicate epithelial tissue remodeling, immune cell

movement, and protease levels as potential underlying

drivers for this observation [64].

Concurrent STIs also have a strong epidemiological link

with increased risk of HIV acquisition. Two of the best-

described STIs that increase HIV risk are Herpes simplex

virus 2 (HSV-2) and human papilloma virus (HPV); each

has been associated with a 2–3 fold increased rate of HIV

acquisition in large meta-analyses [65,66]. While the

mechanism by which this occurs remains unclear, one

hypothesis is that innate host pro/anti-inflammatory med-

iators modulate HIV susceptibility [67]. Indeed, a higher

pro-inflammatory profile characterized by increased num-

bers of HIV-1 target cells (both CCR5+CD4+ T-cells and

DC-SIGN+ DCs) upon HSV-2 infection can persist in

mucosal tissues [68,69]. HSV-2 also associates with the

amplification of target cells expressing homing markers

(a4b7) [70] in the absence of viral shedding and increased
www.sciencedirect.com 
activated CD4+CCR5+ T cells (and subsequently higher

HIV infectivity) in FGT mucosal explant tissue [71]. Less

is known about HPV, although Th1 responses have been

linked with HPV clearance [72]. In the rectal compart-

ment, co-infections can be a cause of proctitis in men who

have sex with men (MSM) [73,74], and associated with

epithelial disruption, inflammation and mucosal ulcera-

tion; thus not surprisingly increased risk of HIV acquisi-

tion [65,75�]. HPV infection is also prevalent in MSM and

associated with an increased risk of HIV acquisition

although the mechanism underlying this process is un-

clear [76]. Thus, STI’s may increase HIV target cells and

homing to mucosa, and potentially epithelial disruption,

but further work is needed to understand these mecha-

nisms given high the prevalence of these STIs and

increased risk for HIV.

Microbiota

Changes in vaginal microbial communities are consistent-

ly associated with increased HIV risk. This is exemplified

by a striking increase in HIV susceptibility with bacterial

vaginosis (BV) by as much as 60% [77–79]. BV occurs

when protective microbiota in the vagina, dominated by

lactic acid-producing Lactobacillus species which are as-

sociated with protection from HIV transmission [80], are

replaced by diverse strains of bacteria such as Gardnerella,

Atopobium, Prevotella, Fusobacterium spp., and other BV-

associated bacteria (BVAB) [79,81]. BV is associated with

increased pro-inflammatory cytokine levels, particularly

IL-1b [82,83]. Some BVAB are associated with cervicitis

in humans [84] which may induce recruitment of T-cells,

and treatment of BV with metronidazole led to decreases

in mucosal CCR5+CD4+ T-cells [85]. Studies of the

mucosal proteome during BV [86] demonstrated lower

levels of factors important for an effective physical barrier

(small proline-rich proteins and involucrin) [7,87,88]. A

recent study by Anahtar et al. demonstrated that high

ecological diversity of FGT microflora drives enhanced

stimulation of TLR4 and NFkB, leading to increased pro-

inflammatory cytokines and a subsequent increase in

activated CCR5+CD4+ T-cells [89��]. Thus, it is possible

that microflora diversity may be an underlying component

and/or driver of host inflammation responses and HIV

acquisition.

Less is known about the role of the rectal microbiome and

HIV transmission. It has been hypothesized that the di-

versity of sexual repertoire and the number of sexual

partners found in many MSM may create a novel ecosys-

tem that facilitates the generation and transmission of

antibiotic resistant Neisseria gonorrhea infection. It remains

to be seen whether this ecosystem might also facilitate HIV

transmission. Although dysbiosis of gut microbiota

increases with progressive HIV infection (discussed below)

[90,91�], it is not clear whether the gut microbiota of HIV-

negative MSM differs from that seen in HIV-negative

heterosexual men. Given that the interactions of the
Current Opinion in Immunology 2015, 36:22–30
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microbiota with the host may lead to significant changes in

the mucosal barrier altered HIV susceptibility, understand-

ing these mechanisms may uncover important microbial

targets for biomedical intervention.

Taken together, further studies of the mechanism of how

these inflammatory/anti-inflammatory mediators lead to

HIV infection risk at mucosal surfaces may shed light on

susceptibility mechanisms and targeted strategies for

prevention technology development.

Pathogenesis
Once HIV infection occurs, the mucosal landscape is

dramatically and rapidly altered. While the underlying

mechanisms of this are unclear, what is evident is that

destruction to the mucosal tissues is substantial and not

completely reversible with ART. Here we will review

recent evidence that demonstrate how multiple factors

impact barrier integrity during HIV infection and con-

tribute to host pathogenesis to HIV (Figure 2b).

Barrier

While early studies reported damage to the GI tract and

alterations in mucosal immunity after HIV infection, the

first indication that barrier function was involved in

pathogenesis came from influential work from Brenchley

et al. demonstrating that microbial products translocate

during HIV infection [92,93]. The mechanism for micro-

bial translocation was subsequently demonstrated to be

focal breaches that occur in the GI tract during HIV

infection, allowing microbial products to translocate from

the lumen [94,95], thus further driving inflammation.

More recently, the consequences of barrier damage in

HIV infection in mortality has been further highlighted.

Namely, Hunt et al. demonstrated that soluble factors in

periphery associated with barrier damage, including the

tight junction protein zonulin, and the epithelial death

biomarker intestinal fatty acid binding protein (I-FABP)

predict mortality in HIV infected individuals [96��].
Furthermore, studies in the SIV model have demonstrat-

ed that preexisting barrier damage before SIV infection

predicts disease progression to AIDS after infection [97�],
demonstrating the importance of barrier health even

before infection occurs.

Homeostatic immunity

Studies of early infection during HIV have been limited

due to difficulty in both early diagnoses of HIV as well as

obtaining samples during these early time points. A major

contribution to our understanding of acute HIV infection

has been by Schuetz et al., where mucosal samples were

collected in acute HIV infection, and patients were initi-

ated on ART extremely early [98��]. These studies dem-

onstrated that several key immunological components are

altered early in HIV infection including rapid loss of Th17

cells in Feibig III, which is not reversible unless ART is

initiated early in Fiebig I/II [98��]. Additionally, Th17 cells
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are rapidly lost in the FGT after HIV infection, demon-

strating that multiple mucosal sites are targets [43��]. Th17

cells are of particular interest in the context of mucosal

immunology given that these cells are critical in mucosal

homeostasis, and loss of Th17 cells in chronic HIV infec-

tion has been associated with damage to the tight epithelial

barrier and ensuing microbial translocation [99–101].

While it is promising that early ART treatment can prevent

Th17 loss, it should be noted that the reality of being able

to treat as early as Fiebig I/II, or essentially two weeks after

infection, would be nearly impossible. Thus, further un-

derstanding of the early kinetics of Th17 loss, why they are

an early target, and their relationship to overall CD4+

T-cell depletion and pathogenesis, will be important for

treatment strategies.

Immune activation

HIV-associated inflammation is one of the most unequiv-

ocally clear consequences of HIV infection and is highly

associated with disease progression, morbidities and mor-

tality, independent of antiretroviral therapy (ART)

[102,103]. HIV itself can directly induce inflammation

via stimulation of immune cells and induction of both

innate and adaptive arms of the immune system [103].

However, it is likely that the majority of the inflammation

in HIV infection is via indirect or ‘bystander’ mecha-

nisms, due to factors such as microbial translocation,

CMV reactivation, and other mechanisms, which can both

cause and be an effect of CD4+ T-cell depletion [102].

Recently, a novel mechanism for inflammation and CD4+

T-cell depletion was described, whereby Doitsch

et al. demonstrated that caspase-1 driven pyroptosis

results in the spilling of cytosolic contents, containing

highly inflammatory cytokines, namely IL-1b [104��].
The major consequence of this chronic inflammation is

increased morbidities and mortality, highlighting the

need to more precisely delineate factors underlying in-

flammation in HIV-infected individuals.

Microbiome

Several recent studies have highlighted that dysbiosis of

the microbiome during HIV infection is associated with

mucosal dysfunction. Vujkovic-Cvijin et al. recently dem-

onstrated that during HIV infection, adherent bacteria

such as Proteobacteria are enriched in the intestinal

mucosa, together with depletion of Bacteroidia bacteria,

which is associated with disease progression [91�]. The

proposed mechanism by which this dysbiosis drives dis-

ease is by the ability for these bacteria to stimulate

kynurenine pathways of tryptophan catabolism [91�],
which is known to depress Th17 cells and associated

with disease progression in HIV [96��,105,106,107��].
Dysbiosis can also directly alter immune cells in the

GI tract; Dillon et al. demonstrated that increased Pre-

votella and Proteobacteria, together with decreased

Firmicutes and Bacteroidetes in HIV infection is associ-

ated with increased T-cell and myeloid DC (mDC)
www.sciencedirect.com
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activation [108��]. In addition, mDCs can be directly

stimulated by HIV-altered mucosal bacteria (HAMBs),

which are associated with T-cell activation [109�]. Final-

ly, Klase et al. demonstrated  that in SIV-infected maca-

ques, Proteobacteria were not only increased, but more

metabolically active, and were identified as the major

bacteria group that translocate during lentiviral infection

[110��]. Taken together, it is clear that dysbiosis of the

microbiome occurs during HIV infection, and is associ-

ated with microbial translocation and inflammation.

However, given that this dysbiosis is associated with

increased adherent Proteobacteria species, it can be

hypothesized that these HAMBs could directly induce

damage to the mucosal barrier. However, the precise

mechanism of this damage is unknown and should be

further studied.

Barrier function and soluble factors

While transmission studies clearly demonstrate that

soluble factors including proteases and extracellular

matrix proteins are associated with inflammation and

increased HIV acquisition [31��], factors such as these

have been largely understudied in terms of pathogenesis

and will be essential to investigate. Transcriptional

analysis of gut tissues in the SIV model has demonstrat-

ed that SIV infection is associated with decreased genes

encoding for cell adhesion  [111�] as well as a decrease in

genes regulating focal adhesions, gap junctions and Wnt

signaling in intestinal epithelium [112]. In addition,

neutrophils have been shown to accumulate at high

levels in the GI tissue of HIV infected individuals

[107��]. Neutrophils secrete several inflammatory solu-

ble factors that could contribute to inflammation and

barrier disruption [31��], and could be a major contribu-

tor to GI dysfunction in the context of HIV. These data

indicate that alterations in protein expression would

therefore probably be altered and may contribute to a

damaged mucosal barrier.

Conclusions
While the phenomena here are well described in both

contributing to HIV transmission and pathogenesis, the

specific mechanisms underlying these dysfunctions of the

barrier are still unclear. To date, while there are many

studies which have provided crucial information in

regards to characterizing mucosal defects and HIV trans-

mission or pathogenesis, we still lack specific mechanisms

and thus targets to decrease HIV-associated disease.

Overall, many issues are important for host barrier inter-

actions in the context of HIV but remain unresolved.

What is clear is that barrier function is a key parameter in

both acquisition and pathogenesis of HIV infection, and

determining specifically what induces inflammation, bar-

rier breakdown, and altered microbiome will be critical in

developing more effective prevention and treatment

strategies for HIV infection.
www.sciencedirect.com 
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