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Introduction
To date, an estimated 3–4 million children are living with HIV and,
despite preventive measures, more than 250,000 infants are
newly infected every year [1]. With access to antiretroviral
treatment (ART), increasing numbers of children are surviving
into adolescence and beyond. Advances in treatment in terms of
availability of new and increasingly efficacious antiretroviral
agents have encouraged the optimistic idea that a ‘cure’ of HIV
infection is possible by reducing the HIV reservoir to a level that
could maintain HIV ‘remission’ after treatment interruption.
However, both the case of the ‘Mississippi baby’ [2] and studies
such as the VISCONTI cohort [3] illustrate that only a very small
minority of patients achieve prolonged viral control after
treatment interruption, with early ART as a single interventional
strategy. Moreover, the mechanisms of post-treatment control

require further characterisation. Indeed, in all but one case,
discontinuation of ART in children without any additional
intervention has resulted in rapid viral rebound [4,5]. In line with
international guidelines, perinatally HIV-infected infants, should
start ART as soon as the diagnosis is confirmed [6], and currently
should remain on therapy for their whole life with the risk of
accumulating toxicity and viral resistance. The rate of virological
failure due to poor adherence increases over time in perinatally
HIV-infected children on ART [7]. Similar data have been reported
in African settings when access to ART is widely available [8]. This
highlights the urgent need to define strategies, such as
therapeutic HIV vaccines, to provide long-term viral suppression
in the paediatric population, in order to permit safe treatment
interruption without viral rebound and its associated
complications [9] (Figure 1). In response, an International
consortium, named EPIICAL (Early-treated Perinatally
HIV-infected Individuals: Improving Children’s Actual Life with
Novel Immunotherapeutic Strategies), has been established,
gathering together scientists and clinicians in the field of
paediatric HIV infection. The EPIICAL project arises from the firm
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Short summary

The EPIICAL (Early-treated Perinatally HIV-infected Individuals: Improving Children’s Actual Life with Novel
Immunotherapeutic Strategies) project arises from the firm belief that perinatally infected children treated with suppressive
antiretroviral therapy (ART) from early infancy represent the optimal population model in which to study novel
immunotherapeutic strategies aimed at achieving ART-free remission. This is because HIV-infected infants treated within
2–3 months of life have a much reduced viral reservoir size, and rarely show HIV-specific immunity but preserve normal
immune development. The goal of EPIICAL is the establishment of an international collaboration to develop a predictive
platform using this model to select promising HIV therapeutic vaccine candidates, leading to prioritisation or deprioritisation
of novel immunotherapeutic strategies.

To establish this platform, the EPIICAL Consortium aims to: develop predictive models of virological and immunological
dynamics associated with response to early ART and to treatment interruption using available data from existing
cohorts/studies of early-treated perinatally HIV-infected children; optimise methodologies to better characterise
immunological, virological and genomic correlates/profiles associated with viral control; test novel immunotherapeutic
strategies using in vivo proof-of-concept (PoC) studies with the aim of inducing virological, immunological and
transcriptomic correlates/profiles equivalent to those defined by the predictive model. This approach will strengthen the
capacity for discovery, development and initial testing of new therapeutic vaccine strategies through the integrated efforts
of leading international scientific groups, with the aim of improving the health of HIV-infected individuals.
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belief that perinatally infected children treated with suppressive
antiretroviral therapy (ART) from early infancy represent the
optimal population model in which to study novel
immunotherapeutic strategies aimed at achieving ART-free
remission

Why are early-treated children a unique
opportunity to evaluate new immunotherapeutic
strategies?
Very early-treated children represent a unique model to evaluate
the potential efficacy of different immunotherapeutic
strategies [10]. Infants differ immunologically from adults, with
an active thymus, very few long-lived CD4+ T memory cells and
reduced HIV-specific immune responses (Figure 2). HIV-infected
infants treated within 2–3 months of life have a very limited size
and diversity of viral reservoir [11,12] compared to early-treated
adults. Early virological control in infants prevents ongoing
seeding of the HIV reservoir with maintenance of a smaller HIV
reservoir over time [12]. Minimising the size of reservoir may
optimise conditions for new strategies aimed at achieving
ART-free virological remission, including immunotherapy
targeting specific viral components in a population with limited
viral diversification.

Infants treated during acute infection rarely exhibit HIV-specific
immunity [13—15] but appear to maintain normal immune
development [16-18]. Furthermore, compared with adults,
children have a more active thymus resulting in a better capacity
for immune regeneration, which permits evaluation of the ability
of potential immunogenic vaccines to induce new traceable
immune responses with novel or available assays [19,20].
Moreover, young infants have high immune tolerance and low
immune activation state, a condition not conducive for HIV
reservoir seeding, resulting in a better response to vaccination
[21,22] (Figure 2). Hence, early-treated children represent the
optimal cohort in which to investigate therapeutic vaccines with
the ultimate goal of controlling the latent/persistent HIV reservoir
without ART [23,24].

The long and winding road towards an effective
HIV therapeutic vaccine
Therapeutic vaccines are part of the HIV cure agenda and are a
global health priority. Several immunotherapeutic approaches to
enhance host immunity and control viral replication have been
tested to date. However, the disappointing results of recent
clinical trials highlight the urgent need for earlier identification of

viable HIV therapeutic vaccine candidates, a step that if left
unaddressed will continue to present significant risks of failure at
relatively late stages of the development process. Preclinical and
early-phase testing of new vaccines requires several years and by
the time a vaccine enters the efficacy-testing phase, it is
frequently out-dated relative to current scientific research [25].
As a result, vaccine development costs are increasing while
financial support is decreasing or at best is unpredictable. Several
other factors are affecting the successful development of an HIV
therapeutic vaccine. First is the lack of specific correlates of
protection that should be induced by an effective therapeutic
vaccine. Protective immunity for current routine childhood
vaccination is typically associated with antibody
responses [26,27]. For HIV vaccines the identification of these
biomarkers is more complex and thus far, difficult to achieve with
current technologies. Evidence suggests a combination of cellular
and humoral immune responses are needed for effective
protection; however, studies have failed to produce reliable
correlates of protection to be used as end points in proof of
concept and subsequently in vaccine efficacy studies [28,29].
Understanding the role of host genetics and the functional
attributes of vaccine-induced immunity can improve our
knowledge of the immune correlates broadly applicable in a
globally efficacious vaccine. Another obstruction in the HIV
vaccine development field is the identification of an optimal
model population to investigate novel approaches. To date,
therapeutic HIV vaccine strategies have been studied almost
exclusively in adults. One major limitation of adult cohorts studied
up to now is the lack of a uniform population in terms of the
timing of diagnosis and commencement of antiretroviral therapy
in relation to the date of seroconversion as well as the
immunological and virological characteristics of the vaccinees
(Figure 2).

The current scenario of immunotherapy in HIV
infection
Of the several immunotherapeutic approaches tested in
HIV-infected adults, very few have induced even a transitory
reduction in viral load in the context of treatment interruption.
Dendritic cell-based immunotherapeutic vaccines using
autologous inactivated HIV or virus-like particles are being trialled
to facilitate recognition and elimination of HIV from the patient’s
own latently infected cells. It has been shown that
HIV-1-specific immune responses elicited by therapeutic DC
vaccines could significantly change plasma viral load set point
after treatment interruption in early-treated chronic
HIV-1-infected patients [30]. Lévy et al. reported that treatment
with dendritic cells generated ex vivo and loaded with HIV
lipopeptides in patients on antiretroviral therapy shows an
association between vaccine-elicited immune responses and
control of viral load [31]. The major limitation of these
approaches is the difficulty of implementation on a larger scale,
particularly in developing countries. Therefore, further
investigation of new vaccine candidates feasible in these settings
is a research priority.

DNA vaccination strategies such as HIV-therapeutic vaccines have
been explored in several completed trials in adults and, for the
first time in children, demonstrating their safety and
immunogenicity [32,33]. DNA vaccines can also be combined
with other vaccination modalities and molecular adjuvants aimed
at increasing the strength and durability of antiviral responses.
Heterologous prime-boost approaches with recombinant
vaccinia- or adeno-based HIV genes used as vaccine boosting,
with or without adjuvants, have induced a broad and strong

Figure 1. Reasons for the urgent need for new therapeutic strategies for vertically
HIV-infected children
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cellular immunity in healthy adults [34-36].

A peptide-based HIV-1 therapeutic vaccine (Vacc-4x) was shown
to significantly modulate the viral set point during treatment
interruption in adults, although without apparent clinical
benefit [37]. Li et al. reported that a therapeutic trial with a
recombinant adenovirus 5 based HIV-1 Gag vaccine (rAd5 HIV-1)
was associated with a modest transient effect on residual
viraemia [38].

Several other strategies have been proposed as potential adjuncts
to ART in the HIV ‘cure’ agenda. These include passive
immunisation with highly neutralising antibodies as tested in an
SIV model [39] and immunotherapy with pegylated interferon
alpha [40]: both appeared to decrease the latent pool of virus.
Clinical trials are currently ongoing to evaluate their use in HIV
therapy in humans.

Such approaches could potentially achieve durable viral
suppression. However, although results reported in adults have
been partially positive, such approaches cannot necessarily be
extrapolated to children.

The novelty of the EPIICAL project
The goal of EPIICAL is to establish a predictive in vivo platform
to select promising HIV therapeutic vaccine candidates and to
evaluate a therapeutic vaccine strategy using early-treated
perinatally HIV-infected children as the model. The Consortium
has access to data from unique cohorts/studies including more
than 1,000 vertically HIV-infected children treated with ART at
<6 months of life. Most of the children have been virologically
suppressed for several years and exhibit heterogeneous serostatus
(e.g. HIV seronegative or seropositive). The plan is that children
from EPPICC, the Thai cohort, CHERUB-UK, NEVEREST,
CHANGES and CHER will be stratified according to the time of
first viral suppression: they will be defined as ‘rapid viral
suppressors’ if viral control occurred within 12 weeks following
ART initiation or ‘slow viral suppressors’ if control occurred after
12 weeks. The CHER and PENTA11 studies include children who
underwent planned treatment interruption after early ART and

all patients showed a viral rebound. These children will be
stratified according to time to viral rebound (defined as viral load
over 1000 copies/mL) as ‘rapid rebounders’ or ‘slow rebounders’,
with cut-off points for inclusion in the two groups based on
statistical analysis and modelling of the data (Figure 3). To
validate this predictive platform, we plan to generate new
immunological, virological and transcriptomic (by RNA
sequencing/Fluidigm-Biomark) [41] correlates/profiles of viral
control in early-treated HIV-infected children (Figure 3).

The development of mathematical models applied to
retrospective data from such cohorts represents a major novel
insight for the EPIICAL project. Mathematical modelling will be
used to address three issues: (i) predicting the virological
response of HIV-infected infants to initiation of ART;
(ii) predicting the response of a patient on ART with undetectable

Figure 2. The unique features of early-treated children as a model. The panel summarises the main differences among early-treated children and other model populations.
HIV-infected infants treated within 2—3 months of life rarely exhibit HIV-specific immunity, have a more limited viral reservoir and viral diversity, greater thymic output, lower
numbers of central memory T cells and greater ability to develop and maintain protective responses to vaccination, compared with other population models
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Figure 3. Cohorts/studies of early-treated HIV-infected children around the world
(both observational cohorts and clinical trials cohorts) that are available to
generate correlates/profiles of viral control after treatment initiation and
interruption
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viral load (<50 copies/mL) to treatment interruption by defining
the endpoint ‘time to viral rebound’; and (iii) to establish
transcriptomic profiles that identify patients who are more likely
to achieve post-treatment virological control (Figure 3).

Mechanistic mathematical models have proved hugely successful
and influential in the HIV field and can provide us with a
fundamental understanding of why patients respond to treatment
in different ways. For example, how are the risks and kinetics of
rebound influenced by the quality and magnitude of immune
responses that a patient exhibits pre-interruption? One could
hypothesise that a successful vaccine will induce a baseline
potential for strong antiviral responses that will limit rebound.
One might also propose that a more measured, less aggressive
response to treatment interruption might be the optimal targeting
of infected cells, while limiting the generation of new susceptible
cells through generalised inflammation. Mathematical models of
the interactions between viruses, susceptible cells and the
immune response are tailor-made for predicting the outcome of
competing processes such as these, and predicting how baseline
state may tip the balance one way or another. Because these
models treat patients’ states as dynamic variables, rather than
simply correlating baseline states to long-term outcome, they
provide the possibility of identifying early predictors of viral
control after ART initiation, or viral rebound after treatment
interruption.

To refine these predictive models, we plan to produce new data
on the existing cohorts using novel optimised virological and
immunological methods. Virological assays can provide not only
a static picture of the viral reservoir, but more importantly,
provide unique virological data on the evolution of the reservoir
following treatment initiation and treatment interruption in large
existing international cohorts. A combination of different and
complementary techniques quantifying integrated HIV-1 DNA,
2-LTR circles, cell-associated RNA and low level residual viraemia
and serology will be used to measure the viral reservoir to
evaluate virological outcomes in PoC studies. Furthermore,
immunological data together with virological data will be used to
feed and refine the predictive model to identify genomic
signatures related to virological control (Figure 4a). For this
purpose, a novel protocol has been developed and is discussed
further in Cotugno et al. (this issue) [41].

Selection of promising immunotherapeutic
strategies through proof-of-concept studies
The selection of promising immunotherapeutic strategies through
PoC studies in early-treated population models represents a major
innovation in the HIV-vaccine field. This approach allows the
selection of promising HIV therapeutic vaccine candidates to be
tested in humans, thus leading to immediate prioritisation or
deprioritisation of the strategy. Immunological and virological
data, as well as the transcriptomic correlates/profiles of infants
who rapidly control viral replication both in response to therapy
initiation and to treatment interruption, will provide the
correlates/profiles that we want to observe and to reproduce in
the in vivo predictive platform with PoC studies (Figure 4b). This
approach stems from the perception, shared by many scientists,
that only the combination of in vitro and in vivo testing in humans
will provide a relevant impact on the HIV-vaccine field and
therapeutic management and lead to immediate prioritisation and
deprioritisation of vaccine candidates and strategies [25,42].
Moreover, this approach will strengthen the capacity for
discovery, development and initial testing of new therapeutic
vaccines for the management of children with HIV infection. The
knowledge gained has the potential to transform the lives of

HIV-infected children worldwide and has a broader applicability
to the treatment of HIV in adults, particularly those who initiate
early ART (Figure 5).

To perform PoC clinical studies, perinatally infected children and
adolescents who started ART early in life (<6 months of age) and
who have remained virologically suppressed will be selected. Viral
suppression is defined as viral load <50 copies/mL, with blips
below 1000 copies/mL allowed. Thus, we will ensure that the
enrolled population represents a cohort of children with a very
limited viral reservoir [43] and with a normal immune system
maintained.

Only children older than 3 years will be considered eligible for
PoC studies. The exclusion of children below this age is to
minimise, in pilot phase studies, the potential risk to younger HIV-
infected children of more rapid disease progression. While there
is no uniform definition of early treatment, with different research
groups defining early ART as starting anywhere from 72 hours to
6 months of life, in order to capture all possible cases in PoC
studies, HIV-infected children treated before 6 months of age will
be considered eligible for the study.

HIV-infected children from Europe, South Africa, USA and
Thailand fulfilling the clinical and virological characteristics
described above will be included. From among the available
immunotherapeutic strategies we have initially selected the prime
(DNA)–(MVA) boost HIV immunisation schedule, as this currently
meets safety criteria allowing proof-of-concept studies in
HIV-infected children. Indeed, such prime-boost approaches
have been shown to induce broad and long-lasting specific
cellular immune responses and functional antibodies in healthy
individuals [34,44—46]. Furthermore, safety and immunogenicity
data are available in HIV-infected patients, including the
paediatric population [32,33]. However, the proposed predictive
platform is designed to test any immunotherapeutic candidates
that correspond to the safety and regulatory correlates/profiles
permitting use in in vivo PoC studies in children.

Treatment interruption: the final goal of HIV
therapeutic vaccine. Ethical considerations for
the early-treated paediatric population
The final goal of an effective therapeutic vaccine should be viral
remission that allows safe periods of treatment interruption.
Current paediatric HIV guidelines do not recommend structured
treatment interruption, nonetheless, treatment interruptions do

Figure 4. (a) Immunological and virological data as well as the transcriptomic
correlates/profiles of infants who rapidly controlled (large retrospective
cohorts/studies) and controlled (prospective cohorts/studies) viral
replication both in response to therapy initiation and to treatment will
provide the correlates/profiles of good or poor viral controllers.
(b) The ability of an immunotherapeutic strategy to reproduce such
correlates/profiles will be at the basis of the in vitro and in vivo predictive
platform.

(a)

Proof of concept
Prioritisation of the vaccine

(b) Deprioritisation of the
vaccine
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occur frequently in clinical practice, with a risk of approximately
30% within 5 years following ART initiation [47]. Most treatment
interruptions are unplanned and taken by the family, or the
children themselves, due to medication fatigue, poor compliance
or adverse events. However, with improvements in survival,
treatment interruption during childhood is an important issue that
must be addressed for the long-term management of the
infection. Few studies have evaluated the risk–benefit ratio of
planned treatment interruption in HIV-infected children. The
PENTA11 study, a randomised controlled trial of CD4 cell
count-guided treatment interruption in children aged 7–15 years,
did not report an excess in deaths or disease progression during
the treatment interruption period [48,49]. However, a persistent
depletion of CD4 memory cells was observed, likely to be a result
of a higher residual productive infection in the planned
interrupted arm compared to children on continuous
therapy [50].

Treatment interruption in early-treated patients appears to be
distinct. The CHER trial, a randomised controlled trial of deferred
versus early infant therapy with treatment interruption after 40 or
96 weeks, is currently the only published study evaluating the
impact of treatment interruption in an early-treated infant
population. This study showed no evidences of excess disease
during the subsequent period of treatment interruption in the
early time-limited ART group. However, a deeper evaluation of
the viral reservoir and of the immune function in this population
is currently taking place. One implication of the expanded early
ART strategy worldwide is the increased number of HIV-infected
children treated early who, while on ART test HIV seronegative,
which has led to a growing demand by parents, and patients, to
question infection status and to request treatment interruption.
The question as to whether there is a safe way to achieve
treatment interruption has become a focus among the scientific
community. While HIV-seronegative children can theoretically
achieve a longer period of viral remission before virological
relapse, as seen with the Mississippi baby, they may also be more
at risk of rapid viral rebound due to the lack of HIV-specific
immune responses as reported in the vast majority of cases,
emphasising the need for immunotherapy. Owing to the absence

of reliable biomarkers predicting safe treatment interruption [51]
in perinatally HIV-infected children and unproven efficacy of
therapeutic vaccines, such a strategy requires close monitoring
and evaluation in clinical trial settings. Many ethical issues
surround antiretroviral treatment interruption and undertaking
such clinical trials in children. A major concern is the possibility of
increasing the viral reservoir in this population. One way to
address ethical implications may be the introduction of predictive
models of virological and immunological dynamics associated
with response to treatment interruption, as proposed by the
EPIICAL project. To maintain progress towards sustained HIV
remission, further studies in early-treated HIV-infected children
are required, with close monitoring and evaluation in the clinical
trial setting.

Conclusion
The unique aspects of early-treated HIV-infected children make
this the optimal model to investigate promising
immunotherapeutic strategies. The EPIICAL project launches a
call to action to investigate novel immunotherapeutic strategies
in such a model. This call to action invites any institution,
scientific group, pharmaceutical company or SME, to explore
their promising immunotherapeutic products in the EPIICAL
predictive platform, leading to immediate prioritisation or
deprioritisation of the candidates.

The combination of the optimal model population, novel available
methodologies and the establishment of a research platform may
give a new insight into the field of therapeutic HIV vaccine
development. This approach will strengthen the capacity for
discovery, development and initial testing of new
immunotherapeutic strategies through the integrated efforts of
leading international scientific groups, with the aim of improving
the long-term health of HIV-infected individuals.
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