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ABSTRACT 

Background & Aims : Chronic infection with hepatitis B virus (HBV) progresses through 
different phases. The first, called the immune-tolerant phase, has been associated with lack 
of disease activity. We examined HBV DNA integration, clonal hepatocyte expansion, HBV 
antigen expression, and HBV-specific immune responses in patients in the immune-tolerant 
phase to assess whether this designation is appropriate or if there is evidence of disease 
activity. 
 
Methods : We studied HBV DNA integration, clonal hepatocyte expansion, and expression of 
hepatitis B surface antigen and core antigen in liver tissues from 26 patients with chronic HBV 
infection (14–39 years old); 9 patients were positive for hepatitis B e antigen (HBeAg) in the 
immune-tolerant phase and matched for age with 10 HBeAg-positive patients with active 
disease and 7 HBeAg-negative patients with active disease. Peripheral blood samples were 
collected and HBV-specific T cells were quantified for each group. 
 
Results : Detection of HBV antigens differed among groups. However, unexpectedly high 
numbers of HBV DNA integrations, randomly distributed among chromosomes, were detected 
in all groups. Clonal hepatocyte expansion in patients considered immune-tolerant was also 
greater than expected, potentially in response to hepatocyte turnover mediated by HBV-
specific T cells, which were detected in peripheral blood cells from patients in all phases of 
infection. 
 
Conclusions : We measured HBV specific T cells, HBV DNA integration, and clonal 
hepatocyte expansion in different disease phases of young patients with chronic hepatitis B, 
with emphasis on the so-called immune tolerant phase. A high level of HBV DNA integration 
and clonal hepatocyte expansion in patients considered immune tolerant indicated that 
hepatocarcinogenesis could be underway— even in patients with early-stage chronic HBV 
infection. Our findings do not support the concepts that this phase is devoid of markers of 
disease progression or that an immune response has not been initiated. We propose that this 
early phase be called a high replication, low inflammation stage. The timing of therapeutic 
interventions to minimize further genetic damage to the hepatocyte population should be 
reconsidered. 
 
KEY WORDS: HBsAg, anti-viral immunity, HBV replication, hepatocyte proliferation 
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INTRODUCTION 

Chronic hepatitis B (CHB) virus infection acquired at birth or in early childhood typically 

progresses through an early disease phase characterized by normal serum alanine 

aminotransferase (ALT) and high titer viremia (EASL & AASLD guidelines).1 Patients can 

remain in this phase of CHB for several decades. Historically perceived as disease-free, 

these patients are considered ‘immune tolerant’ (IT) and thus excluded from therapy based 

on international treatment recommendations (EASL & AASLD). Classically, the IT phase is 

followed by a period of immune active (IA) liver disease, characterized by hepatic flares of 

increased inflammatory activity with elevated ALT levels, where patients are deemed to meet 

treatment criteria.  

 

A question in the management of chronic HBV infection is whether antiviral treatment should 

be withheld until the development of persistently elevated serum ALT. Arguments against 

treatment in the IT phase have centered on drug cost, potential selection for drug resistant 

virus, and toxicity associated with long-term therapy.2 Historically, a stronger argument 

against treatment has been the perceived lack of disease activity and suppression of antiviral 

immunity, but the validity of these arguments, which in a clinical setting normally rely on 

serological assays without liver histology, is unclear. For instance, the mechanism of 

hepatocyte destruction (e.g., apoptosis versus necroptosis) might change during the course 

of CHB, influencing ALT levels in a manner not reflecting the amount of cell destruction.3,4  

 

The notion that events potentially leading to cumulative liver damage, including HCC initiation 

and promotion, are absent in IT patients has been contested by recent immunological data, 

which do not support clear differences between phases of CHB.1,4-6 We have previously 

shown that HBV exposure in utero does not induce a generic state of immunological 

tolerance,7 and also, that HBV-specific T cell responses in young patients labeled IT are not 

inferior to those seen in their peers with IA disease differentiated only by ALT elevation.5 

Recent data from CHB adults confirms that HBV-specific immunological parameters are no 

different between these two disease phases.8 Further evidence against an inert 

immunological response in IT patients has come from a study demonstrating an increased 

innate immune gene signature in IT patients6 and from virological data showing sequence 

evolution of HBV with increasing age in a cohort of IT patients.9   
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The presence of immunological activity and high levels of HBV replication in what is 

considered the IT phase may promote cumulative liver damage, since hepatocytes appear to 

constitute a closed, self-renewing cell population, as reported in animal studies investigating 

both syngeneic hepatocytes and transplanted human hepatocytes.10,11 First, normal 

hepatocytes as well as hepatocytes with markers of senescence were able to proliferate to 

maintain liver mass during injury.12 Second, recent evidence suggests that so-called liver 

progenitor/stem cells (e.g., oval cells) either do not have a significant role in liver 

regeneration13-15 or conversely, if they do have a role in regeneration, are first formed via de-

differentiation of mature hepatocytes.10 Though some of these issues are still contested,16-18 

the overall conclusion that hepatocytes are primarily self-renewing seems valid. 

Consequently, epigenetic and genetic dysregulation, including damage via HBV DNA 

integration, might increase over time. 

 

In the present study, we performed a comprehensive analysis of clinical and virological 

parameters in patients considered IT, and in age-matched IA non-cirrhotic HBeAg positive(+) 

and negative(-) CHB patients. We also assessed the frequency of HBV DNA integration and 

clonal hepatocyte expansion across all patient groups. Integration of HBV DNA into 

chromosomal DNA during chronic infection is one of the factors believed to contribute to or 

reflect mutagenesis leading to hepatocarcinogenesis. Importantly, using duck hepatitis B 

virus, integration was found to occur at double strand breaks, probably due to non-

homologous end joining, and the frequency of mutagenesis during repair of double stranded 

breaks was 10 times as frequent as HBV DNA integration at the site.19 Thus, HBV DNA 

integration frequency may significantly underestimate the mutation frequency in hepatocytes. 

Errors during repair of double stranded DNA breaks are considered important in human 

oncogenesis.20 

 

A recent study showed that virus integration and hepatocyte expansion may be present in the 

IT phase, but this phenomenon was not studied in detail and age-matched controls were not 

available.21 In the present study, we compared HBV integration frequency and clonal 

hepatocyte expansion in young patients considered IT, and aged-matched IA HBeAg(+) and 

HBeAg(-) controls. Since HBV DNA integration occurs at random sites in host DNA, virus/host 

DNA junctions serve as markers of hepatocyte lineages, and the multiplicity of virus/cell DNA 
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junctions from liver tissue can be used to calculate clonal hepatocyte expansion. Finally, 

differential HBV antigen expression in hepatocytes, as well as HBV-specific immune 

responses were determined across the disease phases to test the validity of what is labeled 

IT CHB. 
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MATERIALS AND METHODS 
 
Patient samples & Study design 

Twenty-six patients were recruited and categorized into CHB phases using established 

clinical characteristics: measurements of serum transaminases (ALT), serological 

parameters, including HBsAg, HBeAg, anti-HBeAg and virus titers (EASL & AASLD): Immune 

tolerant (IT) (n=9); HBeAg(+) immune active (IA) (n=10); HBeAg(-) immune active (IA) (n=7) 

(Table 1). The patients were further assessed by liver biopsy. HBV DNA levels (virus titers) in 

serum samples were quantified by real-time PCR (Roche COBAS AmpliPrep/COBAS 

Taqman HBV test v2.0-dynamic range 20 to 1.7x108 IU/ml-Roche molecular diagnostics, 

Pleasanton, CA) and HBsAg by Abbott Architect (Abbott Diagnostics, Abbot Park, IL). Serum 

was tested for HBeAg and anti-HBe with a chemiluminescent microparticle immunoassay 

(Abbott Architect). HBV genotype was also recorded. Ishak fibrosis stage (FS) and necro-

inflammatory (NI) scores from liver biopsies were also determined. Whole blood was taken at 

the time of liver biopsy. PBMC were isolated by Ficoll-Hypaque density gradient centrifugation 

and cryopreserved for immunological analysis. Liver biopsy specimens, surplus to diagnostic 

requirements, were stored at -80°C for subsequent DNA extraction. Tissue samples taken for 

diagnostic histological examination were formalin-fixed, paraffin-embedded and used for 

immune-histochemical staining. Written informed consent was obtained from all patients. The 

study was approved by the local ethics committee (Barts and The London NHS Trust Ethics 

Review Board) and the Institutional Review Board of the Fox Chase Cancer Center.   

 

 

In vitro expansion of HBV-specific T cells 

Frozen PBMCs isolated from fresh heparinized blood by Ficoll-Hypaque density gradient 

centrifugation were thawed and resuspended in AIM-V medium with 2% pooled human AB 

serum (serum AIM-V). For HBV-specific T cell expansion, panels of synthetic peptides (15-

mers, with 10 amino acids overlap, 313 in total) were pooled in 4 mixtures covering the whole 

HBV proteome. After 10 days of in vitro expansion, the presence of T cells responding to HBV 

peptide stimulation were determined by measuring the frequency of T cells producing IFN-γ 

with intracellular cytokine staining (ICS) or ELISPOT assays as previously described22 

(Supplementary Materials & Methods). 
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Immunohistochemistry & Image Analysis 

Adequate specimens of Formalin-fixed and paraffin-embedded tissue from 19/26 patients 

(Table 1) were available for immunohistochemistry (IHC) (Supplementary Materials & 

Methods). 

 

Slides were imaged using a Leica DM6000 B microscope (Leica Biosystems, Newcastle, UK) 

equipped with a Leica DFC300 FX camera (Leica Biosystems, Newcastle, UK). A variable 

number of serial micrographs were taken from each Sirius red stained slide to cover the entire 

tissue. Tissue and collagen areas were measured on each micrograph using the ImageJ 

software (Bethesda, Maryland, USA) (Rasband, W.S., ImageJ, U. S. National Institutes of 

Health, Bethesda, Maryland, USA, http://rsbweb.nih.gov/ij/, 1997-2015) and a protocol 

described on the ImageJ web page (Rasband, W.S., ImageJ, U. S. National Institutes of 

Health, Bethesda, Maryland, USA,http://rsbweb.nih.gov/ij/docs/examples/stained-

sections/index.html, 2015) following previous calibration. Total tissue and collagen areas 

were then calculated for each biopsy (Supplementary Materials & Methods). 

 

Results were assessed and plotted using GraphPad Prism 6 Trial Version (GraphPad 

Software, SanDiego, USA). The following tests were performed: Shapiro-Wilk normality test, 

Mann-Whitney, Kolmogorov-Smirnov, and Spearman correlation. 

 

 

Extraction and inverse PCR analysis of liver DNA   

Two to three ~1 mm pieces of each liver biopsy were cut, and nucleic acids extracted. Inverse 

PCR was designed to detect the right hand junction of integrations occurring between host 

DNA and HBV double stranded linear DNA (HBV dslDNA) (Figure 1A), the primary substrate 

for viral DNA integration.23, 24 To design PCR primers, and determine endonuclease cleavage 

sites for detection of the right hand virus/cell junction fragments, the predominant HBV 

sequence in the liver of each patient was determined by PCR amplification and sequencing of 

fragments covering the region from nts ~1193 to ~1860 on the HBV genome.25 HBV 

sequences were numbered according to Galibert et al.26 (accession number V01460).  
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Prior to inversion, high MW DNA (≥10-20 kbp) was purified by low-melt agarose gel 

electrophoresis, to reduce cccDNA contamination. The DNA was then digested by addition of 

NcoI-HF (NEB) and incubation for 30 min at 37°C. Nc oI-HF was heat inactivated for 20 min at 

80°C, and the DNA recovered using the QIAquick PCR purification kit. The DNA fragments 

were then circularized by incubation with T4 DNA ligase (Figure 1A).27 Prior to use for PCR, 

the circularized DNA was suspended in 40µl NEB buffer 4 supplemented with BSA (NEB) and 

linearized by digestion at 65°C with BsiHKAI (NEB).  Molecules potentially derived from intra-

molecular ligation of residual cccDNA (e.g., between the authentic NcoI site and a distal NcoI 

“star” site in cccDNA) or from cccDNA deletion mutants (PCR conditions were not adequate to 

amplify full-length cccDNA) were cleaved with SphI (NEB) to reduce their amplification during 

inverse PCR. (For several samples, it was necessary to use different restriction enzymes, 

because of differences in HBV DNA sequence (Supplementary Table 1 and Figure 1A). See 

Supplementary Materials & Methods for additional details. 

 

Following inversion, endpoint dilution, and nested PCR, the products were subjected to 

electrophoresis in 1.3% agarose gels containing E-buffer and 0.5µg/ml of ethidium bromide 

(Figure 1B). Bands were excised from the gel and sequenced with the F2 or R2 primer, as 

previously described.28 The junction of viral with cellular DNA was located using the GCG 

program FASTA. Junctions repeated in different wells were identified by comparing cell 

sequences immediately adjacent to virus/cell junctions, using Sequencher version 5.0.1 

(Gene Codes Corporation) (Supplementary Materials & Methods).  

 

 

Quantifying host DNA in liver biopsy extracts   

Host DNA was quantified by real time qPCR of epsilon globin DNA (accession number 

M81361), as previously described.25 A PCR amplified epsilon globin DNA was used as a 

control. The cell equivalents of DNA extracted from each biopsy are summarized in 

Supplementary Table 2. 

 

 

Statistical analyses: Quantifying virus/cell junctions by end-point dilution  

As illustrated in Figure 1, inverted DNA samples were serially diluted into 96 well PCR plates. 
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Typically, 5-10µl of inverted DNA, representing a small fraction of the original DNA sample 

(~5-10%), was added to 170-175µl of PCR reaction mix in well A1. After mixing, 60µl was 

serially diluted into 120µl of reaction mix in wells B1 through G1. Well H1 contained 120µl of 

reaction mix, but no DNA sample, and served as a negative control. 10µl aliquots of the 

reactants in column 1 were then distributed to columns 2 to 12 and subjected to nested PCR. 

95% confidence intervals for clone sizes determined using end-point dilution were calculated 

using the fortran program Sim19 (Supplementary Materials & Methods). 

 

 

Modeling the Clonal Expansion of hepatocytes   

The program Csize8 was devised to predict the size of hepatocyte clones created after birth, 

as a consequence of liver growth and random hepatocyte turnover. Liver growth was 

assumed to be linear during the growth phase. Hepatocyte turnover during growth and in the 

full size liver were assumed to occur as a result of random death of hepatocytes with a rate 

constant, k. In the adult liver, death and regeneration were assumed to occur at the same rate, 

to maintain liver size. In the simulations presented here, k was assumed to be the same for 

the growing and adult liver (Supplementary Materials & Methods). 
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RESULTS 

Evidence of HBV-specific T cell responses in patients in the immune tolerant phase of 

CHB  

HBV-specific T cells were detected in all 3 patient groups, IT, HBeAg(+), and HBeAg(-) IA 

disease (Table 1). Using HBV-specific peptides spanning the entire HBV proteome, T cells 

were expanded in vitro and assayed for both intracellular cytokine staining and ELISPOT 

(Figure 2A). The quantity of HBV-specific T cells in terms of magnitude (number of cells 

recognizing a single HBV peptide mixture, Figure 2B) or the ability to recognize different 

mixtures of HBV peptides (Figure 2C) were comparable among the three patient cohorts. 

Consistent with our previous data,5 patients classified as IT did not show any significant 

difference in circulating HBV-specific T cells in comparison with CHB patients classified as IA 

in relation to their virological and clinical features (Table 1; Groups 2 & 3). Serum ALT levels 

were significantly lower in the IT group compared to the other groups. Despite this, 

differences in immune response of patients across the disease phases were not detected. 

ALT is often considered a surrogate of immune activity; however, as noted earlier, we and 

others have previously demonstrated that ALT does not ‘benchmark’ the HBV immune 

response.5, 8 The comparable levels of peripheral HBV-specific T cell responses in IT patients 

with those in the other two groups suggested that infected hepatocytes might be targeted for 

T cell mediated destruction in all patients including those diagnosed as IT. For this reason, we 

analyzed whether clinical phases could be distinguished by differences in the intrahepatic 

compartment. Immunohistochemistry analyses, measurements of HBV DNA integration and 

hepatocyte turnover were performed to determine if IT patients were different from the other 

patients studied.  

 

 

A larger fraction of nuclear HBcAg positive hepatocytes are found in immune tolerant 

CHB 

Liver tissue from 19/26 patients [Group 1, IT n=8; Group 2, HBeAg(+) IA n=5; HBeAg(-) IA 

n=6] was double stained for detection of HBcAg and HBsAg. Significant differences were 

found in the level of nuclear HBcAg positive hepatocytes in IT patients (Group 1; mean 

30.1%) compared to the other groups (mean 0.92% and 0%; Groups 2 and 3 respectively) (IT 

vs. IA, P<.005) (Figure 3A, B). Interestingly 7/8 IT patients had >18% nuclear-HBcAg positive 
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hepatocytes (Figure 3A); conversely, no patient exceeded ~3% positivity in the other groups 

irrespective of virus titer. HBsAg staining alone, the classical ground glass appearance 

reported on HBV tissue, was significantly higher in HBeAg(-) IA disease (Group 3) compared 

with IT (Group 1) (P=.004), but was not significantly different between Groups 1 and 2 (Figure 

3A, B). These findings are consistent with previous work, which reported that nuclear HBcAg 

positive hepatocytes predominated in the IT phase in children.29 The reason for this finding 

remains unclear.  

 

Despite the significant difference in nuclear HBcAg positive hepatocytes between patient 

groups, there was no overall difference in Ishak fibrosis stage (Table 1), collagen 

proportionate area (CPA) (Figure 3C, D) or histological activity index (HAI) (Table 1; Figure 

3E, F) underscoring the limitations of standard histological assessment and clinical 

parameters used alone or even in combination to define phases of CHB. 

 

 

Integrated HBV DNA was identified in chromosomes of all patients 

Five hundred and ninety two different virus/cell junctions were detected overall, using inverse 

PCR. 500 could be mapped to unique sites on human chromosomal DNA (208 for group 1, 

195 for group 2, 97 for group 3) (Supplementary Table 3; Supplementary Results). Of these 

500 integration sites, 246 were located within potentially transcribed regions, including 217 

mRNA encoding regions and 29 non-coding RNAs. 231 of the integration sites mapped to 

introns, 13 to exons, one at an intron/exon boundary, and one mapped within a gene 

(uncertainty in the exact junction site precluded the exon/intron distinction). Of the protein 

coding genes with integrated HBV DNA, ~70% appeared to be transcribed in the liver. Protein 

expression in the liver has been reported for ~45% of these (www.genecards.org).30 4/29 

regions with integrated HBV DNA that specified non-coding RNAs also appeared to be 

expressed in liver. For most, it was unclear if expression occurred in hepatocytes or other 

liver cells. The remaining 92/592 integrations were located in repeated DNA sequences 

and/or could not be mapped. Our results are likely to underestimate the true number of 

unique HBV integration sites in the DNA samples; that is, single or low copy clones might be 

obscured by competing amplification of high copy number clones (Figure 1B). Notably, 

multiple integrations were found on every chromosome except Y (Table 2; Supplementary 
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Table 3). Integration sites are illustrated in Figure 4A. Using the Chi-Squared Test, we were 

unable to reject the null hypothesis that the integration frequency on chromosomes (Figure 

4A; Supplementary Table 3), including Y (13 of 26 patients were male), was proportional to 

their length (P=0.195). No significant differences were seen between patient groups (Figure 

4B; IT patients).   

 

The average frequency of total integrations in groups 1 through 3, respectively, including 

those in hepatocyte clones, ranged from 1.5x109 to 5x109 per liver of 5x1011 hepatocytes (see 

Supplementary Table 2 for individual patients). Importantly, integration is prevalent in patients 

considered IT. Because just a small fraction of each DNA sample was assayed, we could only 

make a minimum estimate of the unique integration sites among the total. The data 

suggested at least ~5x106 distinct integration sites are present in a liver of 5x1011 hepatocytes 

in each patient group. This high number of possible sites means that a liver of 5x1011 

hepatocytes would contain at least one hepatocyte in which a particular gene would be 

mutated in each patient group including those characterized as IT, not just age matched 

controls with more advanced liver disease. (We could not demonstrate any correlation with 

HBsAg or HBV DNA levels and total integrations in the whole study cohort; thus, the extent to 

which integration might contribute to HBsAg production in the 3 patient groups remains 

unclear).   

 

 

Clonal hepatocyte expansion  

Because the hepatocyte population appears self-renewing, death and regeneration will lead 

to loss of some cell lineages and clonal expansion of others to maintain liver mass. To 

determine if IT patients have elevated hepatocyte turnover, possibly due to anti-HBV immune 

killing, we investigated if these patients had evidence of hepatocyte clones that were similar 

in size to those found in late phases of CHB with HCC.28  Simultaneously, we asked if similar 

levels of clonal hepatocyte expansion were present in our three age-matched patient groups. 

Insertional mutagenesis and expression of HBV genes from integrated DNA are potential 

initiation events in hepatocarcinogenesis, as is repair of double stranded DNA breaks by non-

homologous end joining in the absence of HBV integration.19 Enhanced hepatocyte turnover 

could be promotional,31 by facilitating clonal expansion of subsets of hepatocytes, including 
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but not limited those with preneoplastic mutations. Large hepatocyte clones were seen in all 

three patient groups (Figure 5). The difference in maximum clone sizes between groups 1 

and 3 was statistically significant (P=.0015), as was the difference between groups 2 and 3 

(P=.014) (Table 4; Figure 5); the difference between Groups 1 and 2 did not reach statistical 

significance (P=0.36) (Wilcoxon 2-sided Rank Sum Test).  

 

 

Hepatocyte clone sizes were larger in immune tolerant patients than predicted by a 

model of random hepatocyte turnover 

As discussed, hepatocyte turnover in the liver should lead to increasing clonality, with loss of 

some hepatocyte lineages and expansion of others. To determine if the large clones (Figure 

5A-C) could be explained by random death and compensatory division of hepatocytes, to 

maintain liver mass, a computer simulation, Csize8 (Supplementary Materials & Methods), 

was used. We assumed that hepatocytes proliferate (and die) in the adult liver with a rate 

constant k=0.0015/day (0.15%/day), 3 times the fraction of hepatocytes in the S phase 

(0.0005) in healthy adult liver at any given time.32 We also assumed that infection occurred at 

birth and that the liver size increases 10-fold during maturation. The maximum expected 

clone sizes in the patients studied (age range 14-39 years) increased, with age, from ~400 to 

~600 hepatocytes (Figure 5E). This range would increase from ~800 to ~1200 if the rate 

constant for hepatocyte death increased to k=0.004/day (0.4%/day), and ~1600 to 2800 with 

a rate constant of k=0.01/day (~1% of hepatocytes killed/day) (Figure 5E). 

 

Maximum observed clone sizes exceeded clone sizes predicted for random liver turnover 

(0.015%/day)32 for 6/9 IT patients (Group 1), 6/10 in HBeAg(+) IA patients (Group 2), and 7/7 

in HBeAg(-) IA patients (Group 3) (Figure 5E; Supplementary Table 4). For a turnover of 

0.04% per day, excess turnover was observed in 2/9 patients in Group 1, 5/10 in Group 2, 

and 7/7 in Group 3. 3/10 patient samples in Group 2 and 5/7 in Group 3 exceeded predictions 

even for a daily turnover of 1%. While differences in maximum predicted clone sizes and 

observed sizes may appear small, it is important to note that the amount of hepatocyte 

destruction and replacement in the model that is necessary, for example, to give a maximum 

clone size of 600 (k=0.0015) vs. 2800 (k=0.01) hepatocytes, after 39 years, is 21 vs. 142 

livers worth of hepatocyte death and replacement. In summary, a model of random death and 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 
 

 

regeneration of hepatocytes at a level estimated for healthy liver did not provide a consistent 

explanation for maximum clone sizes observed in 6/9 IT patients, which was also true of 6/10 

patients in Group 2 and all patients in Group 3. The differences might be more extreme, 

because the modeling assumes all clones are detected, not just those with integrations. 

These analyses suggest a selective process for hepatocyte turnover can occur in all groups.  

This might result, for example, from emergence of hepatocyte clones that are resistant to T 

cell killing, or because some hepatocyte lineages are more responsive to growth signals to 

divide, to maintain liver mass. 
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DISCUSSION 

We have demonstrated that HBV DNA integration and clonal hepatocyte expansion were 

similar in patients considered IT to those that have HBeAg(+) IA CHB. These results raise 

questions about the perception that the IT phase is ‘disease-free’, as well as the premise 

upon which treatment decisions are made. In line with our previous work and recent 

publications in the field, we feel that the term ‘high replicative low-inflammatory’ (HRLI) CHB 

more accurately reflects this early disease phase, and thus should now be adopted into 

clinical practice.4-6,8,33 

 

CHB is the leading cause of primary liver cancer worldwide and despite the lack of robust 

data to support this notion,1 the current consensus is that HCC risk does not increase in the 

majority of patients until there is perturbation in serum ALT, interpreted as a sign of immune 

activity. There are, however, studies supporting the development of HCC in the absence of 

advanced liver disease. The REVEAL study demonstrated an association between high viral 

load and HCC development, independent of cirrhosis, thus pertinent to the study population 

here.34 The data presented here suggest that an approach to management which excludes 

HRLI patients (formerly considered IT) from treatment may be flawed, as HBV specific T cells 

as well as extensive clonal hepatocyte expansion are already present in this early phase of 

CHB. Evidence from both animal and human studies demonstrate that clonal hepatocyte 

expansion is a major risk factor for HCC,35 moreover, HBV DNA integration, a potential 

initiating event for HCC, was found to be prevalent not just in later stages of CHB, but also in 

the HRLI phase. The presence of both HBV DNA integration and clonal hepatocyte expansion 

in this early phase of CHB are thus at odds with the concept of a ‘disease-free’ state.  

 

These data are consistent with recent studies and our previous findings,5,6,8 which dispute the 

idea that so-called IT patients are immunologically inert and, therefore, fundamentally distinct 

from HBeAg(+) IA disease. In the current study, we confirmed the presence of HBV-specific 

responses in the HRLI and later phases of CHB by dual modality (ELISPOT and Intracellular 

Cytokine Staining) (Figure 2). These data reinforce the fact that there is no quantifiable 

difference in antiviral immunity between the HRLI phase and HBeAg(+) IA patients. 

Furthermore, these findings were verified by detailed analysis of the liver compartment of the 

patients studied. In keeping with the HBV specific response in the periphery, we 
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demonstrated few if any differences in liver histology (Figure 3). Based on serological 

assessment, patients labeled IT had similar levels of fibrosis, CPA and HAI as those 

considered to have IA disease.  

 

In addition, we could demonstrate differences in the level of nuclear core expression; being 

significantly higher in those considered IT compared with HBeAg(+) and HBeAg(-) IA patients; 

in contrast, HBsAg positive hepatocytes were preferentially found in HBeAg(-) IA patients 

(Figure 3). This mosaic distribution of HBV antigens in different hepatocytes and phases of 

HBV infection might reflect different virological or immunological features that need further 

characterization. A recent study suggested that hepatocytes expressing high HBcAg may 

have higher level of HBV replication and higher cccDNA content than HBsAg expressing 

hepatocytes.36 However, the biological significance of the diverse HBV antigen patterns 

detectable in the different categories of CHB remains unclear.  

 

An important issue is the number of different HBV DNA integration sites in the livers of the 

three patient groups, which will determine the numbers of host genes potentially mutated by 

HBV integration, and also may be an indirect indicator of the number of double strand DNA 

breaks repaired by non-homologous end joining, which is also potentially mutagenic.19,20 Our 

primary goal was to estimate hepatocyte clone size using end point dilution assays; thus, we 

can only make a minimum estimate for the number of unique HBV integration events. The 

real number may in fact be much larger, but interestingly, the number estimated for all three 

patient groups (at least ~5x106 per liver in all three groups) would be sufficient, if uniformly 

distributed across the human genome in a liver of 5x1011 hepatocytes, to place integrated 

HBV DNA within any 1000 nt region in the genome of at least one hepatocyte. (Note that 

mutation by incorrect repair of double stranded DNA breaks may be 10-times more 

frequent.19) Thus, the potential to mutate and alter expression of any host gene in at least one 

hepatocyte appears very high across the disease phases. Some of these integrations may be 

procarcinogenic.  

 

To explore the concept that patients considered IT may require earlier treatment we also 

investigated clonal hepatocyte expansion in these patients and compared it to IA CHB (Figure 

5). The rationale was that clonal hepatocyte expansion in mutated hepatocytes would 
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contribute to tumor promotion.31,35 To the extent that the hepatocyte population is self-

renewing, and undergoing random death and regeneration, it is possible to relate cumulative 

hepatocyte turnover to maximum hepatocyte clone sizes. Compared to our predictions, actual 

clone sizes in HBeAg(-) IA disease (group 3) appeared excessive, similar to those in HCC 

patients, even assuming a relatively high hepatocyte death rate of 1.0% per day (Figure 5).32 

In contrast, HBeAg(+) IA patients (Group 2) appeared to have much lower hepatocyte 

turnover and were not significantly different than those considered IT (Figure 5). Nonetheless, 

average hepatocyte clone sizes in both groups 1 and 2, exceeded predictions for normal liver 

turnover (k=0.0015). Indeed, in some of these patients, very large clone sizes were detected, 

which can only be explained by assuming a selective growth or survival advantage for 

hepatocytes (Supplementary Table 4). This was also noted in a study of non-tumorous liver 

samples from non-cirrhotic HCC patients.21,25 In brief, our data suggest that clonal hepatocyte 

expansion, an HCC risk factor,31,35 is active across all the phases of CHB studied here. 

 

This study confirms the presence of HBV-specific T cell responses and the significant extent 

of HBV DNA integration/cell mutagenesis along with clonal hepatocyte expansion in the HRLI 

phase and across the disease phases. These findings further challenge the notion of an IT 

phase devoid of disease progression, raising questions about the timing of therapeutic 

intervention to minimize genetic damage to the hepatocyte population and reduce the 

promotional role in carcinogenesis of elevated hepatocyte turnover. As the risk of HCC may 

already be present in the HRLI phase, these data make a compelling case to consider 

antiviral therapy in these patients.  Future studies are required to explore the merits of earlier 

treatment to prevent disease progression and the development of HCC in CHB.  
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FIGURE LEGENDS 
 
Figure 1: Inverse PCR detection of integrated HBV D NA. A) Strategy for detection of 

integrated HBV DNA and clonal hepatocyte expansion. Inverse PCR, as used by Summers et 

al.,25,28 was designed to detect the right hand junction of integrations of HBV dslDNA, the 

predominant precursor for integration, into host DNA.23,24 Following cleavage and ligation 

(Figure 1A), the DNA samples were serially diluted and subjected to nested PCR using the 

indicated forward and reverse primers (Figure 1B). Primers are indicated in Supplementary 

Table 1 and Materials and Methods. (Figure 1A modified from reference by Mason et al.25). B) 

Gel electrophoresis of inverse PCR products. Samples from nested PCR, carried out in a 96 

well tray, were subjected to gel electrophoresis in a 1.3% agarose gel. PhiX phage DNA 

digested with HaeIII was used as a size marker (M). The fraction of the initial DNA sample 

distributed across each row of 12 wells is indicated.  Bands were picked from the last 5 rows, 

not including the negative control, and subjected to DNA sequencing to identify virus/cell DNA 

junctions.  For instance, the circled bands arise from a single hepatocyte clone; other clones 

were also identified by DNA sequencing (not highlighted). 

 

Figure 2:  Profile of HBV-specific T cell responses  in all patient groups. 

Patient PBMC were analyzed by ELISPOT and intracellular cytokine staining (ICS) for IFN-γ. 

(A) Evidence of HBV-specific T cell responses by ELISPOT and ICS against the Core, 

Envelope and Polymerase proteins, for each patient in the groups studied; Shaded black – 

positive HBV-specific T cell response; unshaded squares – negative HBV-specific T cell 

response, shaded grey – sample not done. (B) Comparison of spot forming units (SFU) by 

ELISPOT, in each patient, in the different groups; immune tolerant (IT) (shaded black), 

HBeAg(+) IA (shaded grey) and HBeAg(-) IA (unshaded). Bars represent the number of SFU 

cells in response to HBV core, envelope, and polymerase peptide pools. (C) Number of HBV 

peptide pools recognized by HBV-specific T cells obtained in the indicated patients. 

 

Figure 3: Differential nuclear core antigen stainin g but similar fibrosis and 

inflammatory indices between CHB phases. 

Formalin-fixed and paraffin-embedded tissue was analyzed with immunohistochemistry for 

HBcAg and HBsAg positive hepatocytes, along with quantification of fibrosis and histological 

activity indices for each patient. (A) Percentage of HBcAg positive hepatocytes (left panel) 
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and HBsAg positive hepatocytes (right panel) in each group; IT (open circles), HBeAg(+) IA 

(open squares) and HBeAg(-) IA (open triangles). Each point represents 1 patient, data 

shown as mean with SEM, as error bars. (B) Immunostaining identifying HBcAg positive 

hepatocytes (brown) and HBsAg positive hepatocytes (pink) from representative patients from 

each patient group (Table 1) (100x); IT (left panel), HBeAg(+) IA (middle panel) and HBeAg(-) 

IA (right panel). Inset shows magnified image (400x). (C) Ishak Fibrosis stage (left panel) and 

collagen proportionate area (right panel) of patients studied in each phase of CHB, data 

shown as mean with SEM, as error bars. (D) Sirius red staining of liver tissue from 

representative patients in each phase; IT (left panel), HBeAg(+) IA (middle panel) and 

HBeAg(-) IA (right panel). (E) Histological activity index scores; (from left to right – Interface 

hepatitis, Confluent necrosis score, Focal lytic necrosis, apoptosis & focal inflammation score 

and Portal inflammation score) of patients studied in each phase of CHB, data shown as 

mean with SEM, as error bars, (F) Identification of the inflammatory infiltrate as shown in (E) 

from representative patients in each phase of CHB; IT (left panel), HBeAg(+) IA (middle 

panel) and HBeAg(-) IA (right panel). Significant changes marked with asterisks, *P<.05; 

**P<.01; ***P<.001; ns=not significant 

 

Figure 4:  Sites of HBV DNA integration on human ch romosomes.  

A) Integration sites are summarized from all three patient groups (Table 1) by vertical lines. 

Results include the 208 from IT disease patients (Group 1), 195 from HBeAg(+) IA disease 

(Group 2), and 97 from HBeAg(-) IA disease (Group 3). Groups 1 (IT) and 2 [HBeAg(+)]; 

integrations were found on all chromosomes except Y. The single Y chromosome integration 

was from a patient from group 3. No group 3 patient integration sites were mapped to 

chromosomes 15 and 16.  B) Integration sites in Group 1 patients - IT phase. Integration site 

details are shown in Supplementary Table 3. Clone sizes: *>5,000 and #>20,000. 

 

Figure 5:  Hepatocyte clones detected in all patien t groups  

Hepatocyte clones in (A) IT disease (Group 1), (B) HBeAg(+) IA disease (Group 2) and (C) 

HBeAg(-) IA disease (Group 3). Clone sizes were estimated as described. (Figure 1, 

Materials and Methods and Supplementary Materials & Methods). The point estimates for 

clone size were calculated using the program Sim19 (Supplementary Materials & Methods). 

Clones are grouped by increasing size for each patient, and patients within a group are 
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arranged by increasing age from left to right. D) Mean of the maximum clone size for each 

patient within a group. Geometric means were calculated using the point estimates in 

Supplementary Table 4. HCC data are from a published analysis of clone sizes in non-

tumorous liver from a group of 5 non-cirrhotic HCC patients.25 (E) Predicted maximum clone 

sizes vs. age. These were calculated using the Csize8 program (Materials and Methods and 

Supplementary Materials & Methods), for 3 different daily rate constants for hepatocyte 

turnover; k=0.0015/day (0.15%) - (black dashed line); k=0.004/day (0.40%) – (grey dashed 

line) and k=0.01/day (1.00%) - (solid black line). The adjacent corresponding bars indicate the 

geometric mean hepatocyte clone size, for each patient group in (D), for comparison against 

the predicted maximum clone size. 
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Table 1: Patient Characteristics 
 

 
Group 1: HBeAg positive/HBeAb negative; ALT ≤40 (median 32 IU/L); HBV DNA ≥ 7.50 (median 8.58 
log IU/ml) 
Group 2: HBeAg positive/HBeAb negative; ALT >40 (median 83 IU/L); HBV DNA >7.00 (median 8.26 
log IU/ml) 
Group 3: HBeAg negative/HBeAb positive; ALT ≥ 40 with HBV DNA at any level, or if ALT ≤40 with 
HBV DNA >3.3 (median ALT 81 IU/L; median HBV DNA 4.19 log IU/ml) 
 
* Columns indicating whether or not peripheral T cell analyses and IHC were carried out. T cell results 
are presented in Figure 2 and IHC in Figure 3. All samples were analyzed for HBV DNA integration and 
clonal hepatocyte expansion.  
 
HAI, histological activity index 
 
 
 
 
 
 
 
 
 

Group 1: 
Immune 
Tolerant 

Sex Age ALT 
IU/L 

HBV 
Geno-
type 

HBeAg/ 
anti-HBe 

HBV DNA 
log IU/ ml 

HBsAg 
titer  

log IU/ml 

Fibrosis 
Stage (/6) 

HAI 
(/18) 

Peripheral T 
cell 

analysis
* 

IHC & 
Image 

analysis
* 

Pt. 1 F 15 36 E +/- 8.69 5.22 2 3 Yes Yes 
Pt. 2 M 17 29 C +/- 9.17 4.59 1 2 Yes Yes 
Pt. 3 F 18 18 B +/- 8.42 4.68 0 2 Yes Yes 
Pt. 4 M 18 38 D +/- 9.71 5.16 2 2 Yes Yes 
Pt. 5 M 22 40 E +/- 8.66 4.36 3 3 Yes Yes 
Pt. 6 F 24 38 C +/- 8.58 4.52 1 2 No No 
Pt. 7 F 28 30 E +/- 7.60 4.57 1 4 No Yes 
Pt. 8 F 30 32 C +/- 8.51 4.89 1 3 Yes Yes 
Pt. 9 F 39 31 B +/- 8.52 4.55 

 
1 2 No Yes 

Group 2: 
HBeAg(+) 

IA 
   

 
       

Pt. 10 M 14 70 D +/- 8.80 4.17 2 3 Yes Yes 
Pt. 11 M 14 99 A +/- 8.19 4.11 3 4 No No 
Pt. 12 F 16 63 D +/- 7.06 2.67 1 3 No No 
Pt. 13 F 17 127 D +/- 7.98 3.02 3 5 Yes Yes 
Pt. 14 M 19 89 C +/- 8.49 

8.32 
4.82 3 3 Yes Yes 

Pt. 15 F 23 172 A +/- 8.32 4.19 2 7 No No 
Pt. 16 M 25 77 B +/- 8.36 4.76 1 2 Yes Yes 
Pt. 17 M 25 59 D +/- 8.19 5.13 1 3 No No 
Pt. 18 F 28 161 C +/- 7.09 2.29 1 6 Yes Yes 
Pt. 19 F 29 68 B +/- 8.59 5.09 1 4 No No 

Group 3: 
HBeAg(-) 

IA 

 
  

 
       

Pt. 20 M 23 113 D -/+ 3.64 4.09 2 2 Yes Yes 
Pt. 21 F 25 29 E -/+ 4.19 3.73 1 2 Yes Yes 
Pt. 22 M 26 55 D -/+ 2.62 4.15 1 2 No No 
Pt. 23 M 26 118 D -/+ 3.94 5.09 0 1 Yes Yes 
Pt. 24 M 26 110 C -/+ 6.31 3.82 4 5 No Yes 
Pt. 25 F 27 23 D -/+ 6.70 4.03 1 2 Yes Yes 
Pt. 26 M 29 81 C -/+ 8.22 4.49 2 5 No Yes 
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Table 2: Observed and Expected Integration Sites per Chromosome 
 
 Chromosome Chromosome 

length 
Integration Sites 

Observed   Expected 
1 2.49x108 44 40.9 
2 2.43x108 47 39.9 
3 1.98x108 34 32.6 
4 1.90x108 39 31.2 
5 1.82x108 26 29.8 
6 1.71x108 28 28.1 
7 1.59x108 25 26.2 
8 1.45x108 19 23.8 
9 1.38x108 21 22.7 
10 1.34x108 21 22.0 
11 1.35x108 19 22.2 
12 1.33x108 18 21.9 
13 1.14x108 20 18.8 
14 1.07x108 16 17.6 
15 1.02x108 13 16.8 
16 9.03x107 9 14.8 
17 8.33x107 12 13.7 
18 8.04x107 10 13.2 
19 5.86x107 19 9.6 
20 6.44x107 13 10.6 
21 4.67x107 7 7.7 
22 5.08x107 8 8.3 
X 1.56x108 25 19.2 
Y 5.72x107 1 2.3 

Expected integration sites per chromosome were calculated assuming that the incidence of integration 
was proportional to chromosome length. Integration incidence for the X and Y chromosome were 
adjusted to account for the equal numbers of males and females in the patient population.  
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SUPPLEMENTARY MATERIALS & METHODS 

 

In vitro expansion of HBV-specific T cells 

HBV proteome: core (35) envelope (72), X (29) and polymerase (177) peptides of 

differing HBV genotypes (HBV A/D and HBV B/C) were available. A detailed list of the 

peptides used to stimulate PBMCs of the patients was published in Tan et al.1 and 

matched according to the infecting genotype. Twenty percent of PBMCs were first 

stimulated with 10 µg/ml of the different overlapping peptide mixtures from the 

respective HBV genotypes for 1 hour at 37°C, then w ashed and resuspended at 3.0 x 

106 cells/ml before co-culturing with the remaining PBMCs in serum AIM-V 

supplemented with interleukin-2 (IL-2, R&D systems, Abingdon, UK) (20 IU/ml), seeded 

at 1 ml/well in 24-well plates. 

 

 

Intracellular cytokine and IFN-γ ELISPOT assays 

IFN-γ ELISPOT assays were performed as previously described,1 using a panel of 313 

overlapping peptides covering the full HBV proteome sequence pooled in the described 

mixtures. HBV-specific T cell responses were analyzed in IFN-γ ELISPOT assays after 

short-term peptide-specific polyclonal T cell expansion (10-days). Briefly, 96-well plates 

(Multiscreen-HTS Millipore, Billerica, MA) were coated overnight at 4°C with 5 µg/ml 

capture mouse anti-human IFN-γ monoclonal antibody (1DIK, Mabtech, Sweden). Plates 

were then blocked with AIM-V supplemented with 10% heat inactivated fetal calf serum 

(FCS) for 30 minutes at room temperature.  5x104 cells from short-term polyclonal T cell 

lines were seeded per well, in duplicates for each individual peptide mixture. Plates were 

incubated for 18 hours at 37°C in the presence or a bsence of peptides (at a final 

concentration of 5µg/ml). After this incubation, plates were developed using the alkaline 

phosphatase substrate (5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium 

chloride; BCIP/NBT, KPL, MD) according to the recommended protocol from Mabtech. 

The colorimetric reaction was stopped after 10-15 minutes by washing with distilled 

water. Plates were air-dried and spots were counted using an automated ELISPOT 

reader (Immunospot, CTL, OH). The number of peptide specific IFN-γ secreting cells 
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was calculated by subtracting the non-stimulated control value from the stimulated 

sample. Positive controls consisted of PBMC stimulated with the Phorbol-Myristate-

Acetate (10ng/ml) and Ionomycin (100 ng/ml). Wells were considered positive when the 

SFU is above 5 and at least 2 times the mean of unstimulated control wells (3 

wells/patient). 

 

For intracellular cytokine staining, in vitro expanded PBMC were incubated in medium 

alone (control) or with viral peptides (5µg/ml) for 5 hours in the presence of brefeldin A 

(10 mg/ml). After washing, the cells were stained with anti-CD8 Pe-Cy7 and anti-CD3 

PerCp-Cy5.5 mAb (BD Biosciences) for 30 min at 4°C,  fixed, and permeabilized using 

Cytofix/Cytoperm™ Fixation/Permeabilization solution (BD Biosciences, San Jose, CA), 

according to the manufacturer’s instructions. Cells were stained with anti-IFN-γ-PE (BD 

Biosciences, San Jose, CA) for 30 min on ice, washed, and analyzed by flow cytometry. 

Positive responses were considered as those with a frequency of IFN-γ-producing T 

cells at least twice the frequency found in unstimulated cells and where values 

exceeded 0.1% of total T cells. 

 

 

Immunohistochemistry & Image Analysis 

Two 4µm-thick serial sections were cut from each tissue block using a Leica RM2235 

rotary microtome (Leica Biosystems, UK) and picked up on poly-l-lysine coated slides. 

The first section was stained with Sirius red according to standard staining protocols 

(Liver Histopathology Department, Institute of Liver Studies, King’s College Hospital), 

followed by HBsAg immunohistochemistry on a fully automated IHC and ISH Leica 

BOND-MAX immunostainer (Leica Biosystems, Newcastle, UK) using a Leica Bond 

Polymer Refine Detection kit (code DS9800, Novocastra, Newcastle, UK). On the 

second slide double epitope immunohistochemistry for HBsAg and HBcAg was 

performed using the same immunostainer, the Polymer Refine Detection kit for HBcAg, 

and the Leica Bond Polymer Refine Red Detection kit (code DS9390, Novocastra, 

Newcastle, UK). Rabbit polyclonal anti-HBcAg antibody (Dako); (concentration 1:10,000) 

and mouse monoclonal anti-HBsAg (Dako), (concentration 1:600) were used. Slides 
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were then dehydrated with alcohol, cleared with xylene and cover slipped with DPX 

(Leica Biosystems, UK). 

 

 

Collagen Proportionate area 

Collagen proportionate area (CPA) was calculated using the following formula: Total 

Collagen Area/Total Tissue Area × 100. Total parenchymal area was determined as the 

difference between total tissue area and collagen area. Hepatocytes were counted on 

10 random high power fields (HPF) within the parenchymal area, and the total number of 

hepatocytes per biopsy was estimated as the number of hepatocytes/µm2 times the total 

parenchymal area. Numbers and percentages of HBcAg-, HBsAg-, and double-positive 

hepatocytes were assessed. For cluster analysis, a cluster was defined as at least two 

adjacent HBcAg+ and/or HBsAg+ hepatocytes (data not shown). The number, size, and 

composition of clusters in terms of HB positivity, as well as the number of isolated 

HBcAg+, HBsAg+, double-positive, and negative hepatocytes, were assessed on 5 

random HPF within the parenchyma of each biopsy. The Modified Hepatic Activity Index 

(HAI) and Ishak Fibrosis Stage were assessed by a liver histopathologist (AQ) who was 

blinded to the clinical data. 

 

 

Extraction of liver DNA and inverse PCR analysis 

In brief, each biopsy sample was placed in 400µl of 0.05M TRIS-HCl, pH 7.8, 0.01M 

EDTA, 0.1M NaCl, 5% (w/v) SDS, 1mg/ml proteinase-K, and incubated for 2 hours at -

55°C with occasional vortexing for a few seconds. After cooling, the sample was 

extracted with an equal volume of phenol:CCl3 (1:1), and nucleic acids in the aqueous 

phase were precipitated by addition of 20µg of dextran carrier and 2 volumes of 100% 

ethanol. Samples were stored for at least 16 hours at -20°C, and nucleic acids were 

collected by centrifugation, washed once with 1ml of 100% ethanol, vacuum dried, 

dissolved in EB buffer (Qiagen), and stored at -80°C.  
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Preparative electrophoresis in 1% low-melt agarose gels containing E buffer (0.04M 

TRIS-HCl, 0.02M Na Acetate, 1 mM EDTA, pH 7.2, 0.5µg/ml ethidium bromide) was 

carried out as described previously.2 The region of the gel containing high molecular 

weight DNA (≥10-20kbp), as visualized by ethidium bromide staining, was excised and 

equilibrated overnight with the appropriate New England Biolabs (NEB) restriction 

endonuclease buffer (Supplementary Table 1). Restriction digestion followed by intra-

molecular ligation with T4 DNA ligase was carried out as illustrated in Figure 1A. The 

DNA was then suspended to 450µl in T4 DNA ligation buffer (NEB) and incubated for 2 

hours at room temperature with 500 units T4 DNA ligase to facilitate intra-molecular 

ligation, to join the NcoI site in viral DNA the nearby NcoI site in cell DNA (Figure 1A). 

The T4 DNA ligase was heat inactivated for 20 min at 72°C, and the products recovered 

by ethanol precipitation. The circularized DNAs were then cleaved by restriction 

endonuclease digestion (Supplementary Table 1, Figure 1A) to produce linear 

molecules in which the virus/cell junction is flanked by viral DNA sequences. Following 

serial dilution into microtiter trays (12 wells per dilution), nested PCR was carried out 

using the HBV specific forward primers F1 and F2 and reverse primers R1 and R2 

(Supplementary Table 1, Figure 1A). The F1 primer sequence (nts 1587 to 1605) was 

5’-TTCGCTTCACCTCTGCACG-3’ (#1380). The F2 sequences (nts 1607-1625) were 5’-

CGCATGGAGACCACCGTGA-3’ (#1385); 5’-CGCATGGAAACCACCGTGA-3’ (#1529); 

5’-CGCATGGCGACCACCGTGA-3’ (#1532); 5’-TGCATGGAAACCACCGTGA-3’ 

(#1533); 5’-CGCATGGAGGCCACCGTGA (#1535). The R1 primer sequences (nts 

1424-1407) were 5’-AAAGGACGTCCCGCGCAG-3’ (#1383); 5’-

AAAGGACGTCCCGCGAAG-3’ (#1395); 5’-AAAGGACGTCCCTCGCAG-3’ (#1530); 5’-

AAAGGACGTCCCCCGCAG-3’ (#1534). The R2 primers sequences (nts 1392-1374) 

were 5’-CACAGCCTAGCAGCCATGG-3’ (#1382); 5’-TACAACCTAGCAGCCATGG-3’ 

(#1393); 5’-CACACCCTAGCAGCCATGG-3’ (#1437). The primer sets used for each 

patient are summarized in Supplementary Table 1. Reaction 1 was carried out using the 

AmpliTaq Gold reagents (Applied Biosystems) with 0.25units polymerase per 10µl 

reaction. ~0.5µl was transferred using a pin replicator to reaction 2. The 2nd PCR 

reaction was carried out using 10µl of GoTaq reagents (Promega) with 0.25units 

polymerase per 10µl reaction. 
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The right hand virus/cell junction, on the viral genome, was detected for 500 of 592 

integrations; for the remainder, uncertainty in sequence reads near the virus/cell junction 

or insertion in repeated DNA prevented precise mapping.  ~92% of the viral junctions 

with host DNA were between nt 1688 and nt 1829, the 5’ end of HBV minus strand DNA 

(data not shown), similar to previous reports3, 4. Integration sites on the human genome 

were located using BLAST of human genome build GRCh38. Location of integration 

junctions to introns or exons was determined using the Integrated Genome Browser5 

genome version H_Sapiens_Dec_2013.   

 

 

Statistical analyses: Serial dilution of DNA samples for inverse PCR.  

In this situation, the starting material contains a finite number of different virus/cell 

junctions. The problem is to estimate the copy number, n, for a repeated junction using 

the results from serial dilutions. From the point of view of quantifying n for a particular 

virus/cell junction, there are two technical problems. First, at lower dilutions, its presence 

in a given PCR well may be obscured by more abundant virus/cell junctions. Thus, not 

all dilutions may be informative with respect to copy number, and we were often required 

to estimate clone sizes from the higher sample dilutions, where there were only a few 

positive wells. This competition problem also means that we may totally fail to detect 

some repeated fragments because they are of low abundance compared to others. 

Though we have seen instances of clone sizes as low as ~20, these will be obscured 

when very large clones are present in a sample.  

 

A Monte Carlo approach was therefore used to devise a statistical model to give a clone 

size range with 95% confidence, as well as a best-fit point estimate. For example, if 

there was no competition, then we might see that the seven rows with increasing, 3-fold 

sample dilutions contained 12,12,12,9,7,3 and 1 positive wells, respectively, for a given 

virus/cell junction fragment. That is, a data vector, data0, with the values 

(12,12,12,9,7,3,1). To simulate this, we considered selection of a fraction f of the 

virus/cell junctions for distribution to 12 wells at each dilution of n virus/cell junctions, 
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including the initial dilution into the first 12 wells. The probability would be 2/3 for the 

next six 3-fold dilutions. If informative data is obtained from all 7 wells, then in the 

simulation, the vector (k1,k2,…,k7) would be obtained for an assumed value of n and 

compared to the data using a least squares fit, S, as follows: 

, 

where w = (√729, √243, √81, √27, √9; √3, √1) is used to weight the data at each dilution, 

on the assumption that the lower dilutions have higher value. S01 measures the fit for the 

first of a series of random trials for a given value of n. S02,…S00,1000 for the same value 

of n are similarly produced in subsequent trials. All of these values are averaged to give 

S0, which measures the average fit of random process output to the given data for this 

value of n.  

 

To determine the fit of n to the data, a single random trial of the process is executed with 

n and the output used as a simulated data vector, data1. The process described above is 

now run using data1 and used to produce an average least squares fit, S1. The process 

is repeated again, starting with a new simulated data vector, data2, to produce S2, and 

so on using data sets data3 through data99.  These 100 trials give rise to average least 

squares fits S1 through S99 to simulated data sets for the value n. Each value of S for the 

simulated data sets is compared to S0.  If the tally Sj ≥ S0 for j = 1 through 99 is less than 

5, then the hypothesis that data0 came from a process determined by n can be rejected 

at the 5% level.  

 

To obtain a confidence region and best fit for n, a binary search can now be used to vary 

n and decide which values are in a, say, 95% confidence region. For example, with f = 

0.1, and data0 = (12,12,12,9,7,3,1) we found a best fit estimate of n = 6779 and that n is 

in the range 3405-13747 with 95% confidence. In practice, a vector may have the values 

(-,-,-,-,7,3,1), where the negative sign indicates that no information was available at the 

these dilution. The program, Sim19, is available upon request (Samuel.Litwin@fccc.edu). 
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Modelling of Clonal Expansion of hepatocytes.   

The simulation Csize8 was designed to study a liver sample of up to 10,000,000 cells, 

with the object of tracking the number and sizes of distinct clones of cells. Hepatocytes 

at time zero were each given a unique identifier. This is based on the assumption that 

infection is neonatal. These hepatocytes then divide to expand liver size (in the 

simulations presented here, the liver was assumed to increase 10-fold in size, from 

800,000 to 8,000,000 million hepatocytes, during the first fourteen years of life). During 

growth, and later, random hepatocytes die at a fixed rate and are replaced by replication 

of other random hepatocytes. Hepatocyte death leads to loss of some unique identifiers; 

i.e., reduction of the total number of distinct clones. However, selection of random cells 

to replicate will increase the sizes of other clones. The number of clones of each size 

from 1 to the maximum clone size is finally tabulated at the end of the run. Fortran code 

or the compiled program is available upon request to Samuel.Litwin@fccc.edu or 

William.Mason@fccc.edu.   
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SUPPLEMENTARY RESULTS 

 

Integrated HBV DNA was identified in chromosomes of all patients.  

An inverse PCR protocol was designed to detect virus/host DNA junctions that 

occurred near the 3’ end of HBV dslDNA (Figure 1), and to estimate the sizes of 

hepatocyte clones emerging subsequent to viral DNA integration.1-3 After DNA 

inversion, the samples were serially diluted into microtiter trays. Virus/host junctions 

were then amplified by nested PCR, using HBV specific primers. The PCR products 

were detected by agarose gel electrophoresis, as illustrated in Figure 1B (Group 3, 

patient 23, Table 1).  In this example, all DNA bands from the 5 highest sample 

dilutions were excised and sequenced to map the virus/cell junctions. Sequences 

were then compared using Sequencher software (Gene Codes Corp., Ann Arbor, MI), 

to identify virus/cell junction fragments resulting from the same integration event.  For 

example, the circled bands (Figure 1B) all revealed the same virus/cell DNA junction. 

Assuming this virus/cell junction occurs once per hepatocyte, it is present in a clone of 

~12,000 hepatocytes (Supplementary Table 3, patient 23, clone 82).  In fact, this clone 

was larger than ~12,000, because the junction was also detected in an adjacent 

fragment of the liver biopsy from this patient. The remaining bands in Figure 1B 

represented either smaller clones, or virus/host junctions that occurred only once.  

 

Overall, two distinct integrations into the same gene occurred six times, including “cell 

adhesion molecule L1-like” (gene symbol CHL1) and “alcohol dehydrogenase 1B 

(class I), beta polypeptide” (ADH1B) on chromosome 3, “vav 2 guanine nucleotide 

exchange factor” (VAV2) on chromosome 9, “myosin XVI” (MYO16) and “sodium leak 

channel, non selective” (NALCN) on chromosome 13, and “mbt domain containing 1” 

(MBTD1) on chromosome 17.  Only the two chromosome 17 integrations, in MBTD1, 

were observed in the same patient, 16. In addition to integrations within genes, 

another 46 integrations mapped within 10,000 nts of a gene, 101 between 10,000 and 

100,000 nts, and 103 between 100,000 and 1,000,000 nts (Supplementary Table 3).   

 

While integrants appeared to be distributed at random across most chromosomes, 

three possible exceptions were noted. Using the Komogorov-Smirnov test, a higher 

than expected accumulation of the integrations on chromosomes 2 and 13 appeared 

near their right hand ends, from nt 187112119 to the right hand end of chromosome 2, 
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and from nt 83040027 to right hand end of chromosome 13 (Figure 4A).  The lack of 

integrations adjacent to the centromere on chromosome 1, between nts 101626622 

and 147668340, also appeared statistically significant, occurring only 62 out of 10,000 

times in simulations of random distributions of integration sites across this 

chromosome.  
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Supplementary Table 1:  Restriction endonuclease digestions and primers for Inverse PCR 

 
 1st Cut 2nd Cut 3rd Cut Primers for Inverse PCR 

Group 1: 
Immune 
Tolerant  

   F1 F2 R1 R2 

Pt. 1 NcoI-HF BsiHKAI SphI-HF 1380 1385 1530 1382 
Pt. 2 NcoI-HF BsiHKAI SphI-HF 1380 1385 1383 1437 
Pt. 3 NcoI-HF BaeGI SphI 1380 1385 1383 1382 
Pt. 4 NcoI-HF BsiHKAI SphI-HF 1380 1385 1383 1382 
Pt. 5 NcoI-HF BsiHKAI SphI-HF 1380 1385 1534 1382 
Pt. 6 NcoI-HF BsiHKAI SphI-HF 1380 1385 1383 1437 
Pt. 7 NcoI-HF BsiHKAI SphI-HF 1380 1385 1530 1382 
Pt. 8 BamHI-HF BaeGI NcoI 1380 1385 1383 1382 
Pt. 9 NcoI-HF BaeGI SphI 1380 1385 1383 1382 

Group 2: 
HBeAg(+) 

IA 

       

Pt. 10 NcoI-HF BsiHKAI SphI-HF 1380 1385 1383 1382 
Pt. 11 NcoI-HF BsiHKAI SphI-HF 1380 1533 1395 1393 
Pt. 12 NcoI-HF BsiHKAI SphI-HF 1380 1385 1383 1382 
Pt. 13 NcoI-HF BsiHKAI SphI-HF 1380 1385 1383 1382 
Pt. 14 NcoI-HF BsiHKAI SphI-HF 1380 1529 1383 1382 
Pt. 15 NcoI-HF BsiHKAI SphI-HF 1380 1385 1395 1393 
Pt. 16 NcoI-HF BaeGI SphI 1380 1385 1383 1382 
Pt. 17 NcoI-HF BsiHKAI SphI-HF 1380 1535 1530 1382 
Pt. 18 BamHI-HF BsiHKAI SphI-HF 1380 1385 1383 1382 
Pt. 19 NcoI-HF BaeGI SphI 1380 1385 1383 1382 

Group 3: 
HBeAg(-) 

IA 

       

Pt. 20 NcoI-HF BsiHKAI SphI-HF 1380 1385 1383 1382 
Pt. 21 NcoI-HF BsiHKAI SphI-HF 1380 1385 1530 1382 
Pt. 22 NcoI-HF BsiHKAI SphI-HF 1380 1385 1383 1382 
Pt. 23 NcoI-HF BsiHKAI SphI-HF 1380 1385 1383 1382 
Pt. 24 BamHI-HF BsiHKAI NcoI-HF 1380 1532 1383 1382 
Pt. 25 NcoI-HF BaeGI SphI 1380 1385 1383 1382 
Pt. 26 NcoI-HF BsiHKAI SphI-HF 1380 1385 1383 1382 

Digestion 1 was carried out after equilibration of gel slices with NEB4. Digestion 2 with BsiHKAI 
and SphI (or NcoI) was carried out in NEB4 supplemented with BSA.  BaeGI and SphI (or NcoI) 
digestion 2 was carried out in NEB1.  The relevant cleavage sites on the HBV genome for BamHI, 
BaeGI, BsiHKAI, NcoI and SphI are nt 1402, 1585, 1585, 1374, and 1238, respectively (relative 
to HBV accession number V01460). PCR primer sequences are presented in Materials and 
Methods. 
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Total integrants in a biopsy were corrected for the fraction of the biopsy that was 
analyzed. Distinct integrations were not corrected, since we did not know if analyzing a 
larger fraction of a biopsy specimen would reveal new integration sites. Thus, distinct 
integration sites may represent a minimum estimate of those actually present. Total 
and distinct integration sites per liver were estimated assuming that human liver 
contains 5x1011 hepatocytes. Total cells in a biopsy, as determined by qPCR 
(Materials and Methods), include non-hepatocytes. Subsequent calculations were 
corrected with the assumption that 70% of total cells are hepatocytes.   

 

Group 1: 
Immune 
Tolerant 

Total 
cells1 

Distinct 
integrants /  

total integrants 

Total 
integrants 
per liver 

Distinct 
integrants 
sites per 

liver 

Fraction of 
hepatocytes with 
integrated HBV 

DNA 
Pt. 1 4.7x105 17/3134 3.3x109 1.8x107 9.5x10-3 
Pt. 2 3.1x106 34/2067 3.4x108 5.5x106 9.7x10-4 
Pt. 3 2.2x106 23/2254 5.2x108 5.2x106 1.47x10-3 

Pt. 4 1.9x106 41/3100 8.2x108 1.1x107 2.3x10-3 
Pt. 5 1.09x10

6
28/1833 1.3x107 1.3x107 2.4x10-3 

Pt. 6 1.47x10
6

28/2134 7.3x108 8.8x106 2.1x10-3 
Pt. 7 5.6x106 46/22300 1.98x109 4.1x106 5.7x10-3 
Pt. 8 2.4x106 23/3168 6.5x108 4.7x106 1.87x10-3 
Pt. 9 7.2x106 23/4634 8.7x108 1.6x106 8.7x10-4 

Group 2: 
HBeAg+ 

IA 
     

Pt. 10 1.28x10
6

36/3088 1.21x109 1.4x107 3.5x10-3 
Pt. 11 2.4x106 15/300 6.2x107 3.1x106 1.79x10-4 
Pt. 12 1.85x10

6
27/9408 2.5x109 7.3x106 7.3x10-3 

Pt. 13 4.6x106 35/11280 1.21x109 3.7x106 3.5x10-3 
Pt. 14 5.5x106 19/18900 1.7x109 1.7x106 4.9x10-3 
Pt. 15 3.6x106 33/16900 2.4x109 4.6x106 6.7x10-3 
Pt. 16 2.4x106 31/1840 3.9x108 6.6x105 1.12x10-3 
Pt. 17 3.3x105 9/811 1.24x109 1.4x107 3.6x10-3 

Pt. 18 4.7x106 7/11616 1.25x109 7.5x105 3.6x10-3 
Pt. 19 9.2x105 9/2016 1.09x109 4.9x106 3.1x10-3 

Group 3: 
HBeAg- 

IA 
     

Pt. 20 3.3x106 22/12528 1.89x109 3.3x106 5.4x10-3 

Pt. 21 1.91x10
6

21/7080 1.86x109 5.5x106 5.3x10-3 
Pt. 22 9.5x105 20/12960 6.8x109 1.1x107 1.96x10-2 
Pt. 23 2.4x106 19/17568 3.7x109 4.0x106 1.05x10-2 
Pt. 24 8.3x105 6/9008 5.4x109 3.6x106 1.55x10-2 
Pt. 25 3.9x106 5/3952 5.0x108 6.4x105 1.44x10-2 
Pt. 26 4.4x106 28/74878 8.54x109 3.2x106 2.44x10-2 
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11

22

33

44
55
66

77

88

99

1010

1111
1212

1313

1414

1515
1616

1717

1818

1919

2020

2121
2222

2323
2424

2525

2626

2727
2828

2929

AA BB CC DD EE FF GG HH II JJ KK LL MM NN OO PP QQ RR

patient 
number Group Age

sequence 
no

clone 
no.

Clone 
size Chrm

Chrm insert 
sites

gene 
symbol

insert 
lccation

Gene 
polarity

gene to 
left

distance 
to left 
hand 
gene

gene to 
left 

polarity
gene to 

right

distance 
to right 
hand 
gene

gene to 
right 

polarity
cell junction sequence (lower to 

higher sense)

1 1 15 4042 253 2035 X 89717084 CPXCR1 -962300 + TGIF2LX 204856 + AGCCATATTTCTGTTCTT--HBV

1 1 15 4050 3 150124112
TMEM18

3B -140746 -
LINC0121

3 114406 + GCCAGCAGGAGCTTTGCT--HBV
1 1 15 3209 185 23 12 102998812 ASCL1 -38296 + C12orf42 238778 - AAAATGTAACAAGAGTC--HBV
1 1 15 3186 182 282 22 20814502 PI4KA intron - HBV--AGTTTTCGAAGGCTGAGG

1 1 15 3183 184 78 1 155314931 FDPS intron +
TGGTGGTGGCTGAAACAAGATTG

TC-HBV

1 1 15 3203 181 165 2 196661734
CCDC15

0 intron + HBV--ATTGCCCTTAATAGTACTT

1 1 15 3202 183 165 4 6942259
TBC1D1

4 intron +
ACTGAATTATTTCATGCCTTC--

HBV

1 1 15 3188 7 156990872 NOM1 -17690 + MNX1 13980 -
HBV--

nnGACTGTGTCTATCATTGGG

1 1 15 3191 6 142418190
ADGRG

6 intron + TAATCCCAGCTACTACTCn--HBV
1 1 15 3199 13 43244958 ENOX1 intron - within 130 nts to right if 43244958

1 1 15 3208 6 114662146 HS3ST5 -599269 - >1000000
HBV--

GGTGGTTTAAGCAAAATAAAT

1 1 15 3334 190 103 19 45113949
PPP1R3

7 intron + HBV--TGGCTCTGCTTGCTCTTT

1 1 15 3337 188 732 2 187112119 ZSWIM2 -262949 - CALCRL 229843 - GCAGTTATGTATATGTTTCT--HBV
1 1 15 3368 189 1078 0

1 1 15 3339 187 571 1 12184317
TNFRSF

1B intron + HBV--TCATTGTTTAGCCATGAC

1 1 15 3338 186 1223 15 44884789 TRIM69 -117017 + C15orf43 71903 +

HBV--
AAAAAAGGAAAAAAAAACTC 

ATTTGGAGT

2 1 17 3296 206 20 1 2970771 TTC34 -181180 -
LINC0098

2 88845 - GCTGATAACAGCCGGGC--HBV

2 1 17 3291 205 102 4 84240667
LOC101
928978 intron HBV--nCCAAACATATTAATTGGGAT

2 1 17 3274 204 275 1 84772117 SSX2IP -81560 - LPAR3 41285 -
CCCGTGTATCATCTAAGAGG--

HBV
2 1 17 3260 0

2 1 17 3264 X 97542265
DIAPH2-

AS1 intron -
AGTCAGAAAGTCTTCnnnnnnnnnn

nnnnnnnnnnnnnn--HBV
2 1 17 3272 0

2 1 17 3276 12 99976747 ANKS1B intron - TTAATAAGAAACATGAT--HBV

2 1 17 3278 4 176197346 SPATA4 -1675 - ASB5 16328 -
TAAAGGGAAAAGTCAAAGTGnnnn

nn--HBV

2 1 17 3283 3 147148414 PLSCR5 -542198 - ZIC4 237633 - GGCACATAGACCAATGGAA--HBV
2 1 17 3290 0

2 1 17 3303 200 176 5 45712223 HCN1 -16105 - >1000000 HBV--TGGAATAATATGCTTGC

Table S3:  HBV DNA Integration Sites*
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3030

3131

3232
3333
3434
3535

3636
3737

3838

3939
4040
4141
4242
4343

4444
4545
4646
4747

4848

4949
5050
5151

5252
5353

5454

5555

5656

5757

5858

5959

6060
6161

6262
6363

AA BB CC DD EE FF GG HH II JJ KK LL MM NN OO PP QQ RR

2 1 17 3324 201 118 2 193675671 PCGEM1 -898772 +
LOC1019

27406 668597 +
HBV--

AAATCAGAGATAACAGCATCC

2 1 17 3310 202 63 13 83919439 SLITRK1 -37046 -
LINC0033

3 221162 + HBV--TTTTAAAAAATATAACT

2 1 17 3332 203 63 4 111109946 PITX2 -467823 - >1000000 ATATATATATATTAAAATTnn--HBV
2 1 17 3298 0
2 1 17 3299 2 164157155 FIGN -421152 - GRB14 335250 - HBV--AACTATGATAGTGGTGA
2 1 17 3304 0

2 1 17 3306 3 197990949 LMLN intron +

HBV--
nnAATGACNGATNATTTTCTTTGG

TGTCTG
2 1 17 3313 18 28103851 CDH2 intron - TACTTTTATATGGCTGCA-HBV

2 1 17 3316 1 100312508 RTCA -19739 + CDC14A 39958 +
AGTCATTTCTGTGTGATGGCTnnn

nnnn--HBV

2 1 17 3317 X 40821270
MED14O

S -82569 +
LOC1001

32831 9946 - HBV--AGTAAGTACCAATGGC
2 1 17 3318 4 87006259 AFF1 intron + within 40 nts to left of nt 80192447
2 1 17 3325 0
2 1 17 3329 0
2 1 17 3331 0

2 1 17 3533 216 1087 5 9591420 SNHG18 -41123 + TAS2R1 37576 - ACATTAAAATCAAGAACTT--HBV
2 1 17 3535 14 79214645 NRXN3 intron + HBV--AAATCTGGATGTGGATCC
2 1 17 3540 0
2 1 17 3541 0

2 1 17 3542 2 83784072 LOC1720 -926303 +
FUNDC2P

2 506609 +
within 110 nts to right of nt 

83784072

2 1 17 3544 10 20668718 MIR4675 -116672 + NEBL 111255 - HBV--CTGTGTCCCCACCCGA
2 1 17 3546 19 46739731 STRN4 intron - GGCCCAACTTAGACACTTA--HBV
2 1 17 3555 2 231222422 ARMC9 intron + HBV--CAGCCTAATAAGGTTCCT

2 1 17 3563 4 58975164
>100000

0 >1000000 HBV--CACTATTGATAATGTCAA
3 1 18 3803 222 34 0

3 1 18 3812 220 103 3 117606720
LINC009

01 -674482 >1000000 HBV--AATGACACATCTAGTCT

3 1 18 3819 221 103 11 128419044
>100000

0 ETS1 39716 - HBV-AGTGTATCAGGTAT

3 1 18 3806 3 198096501
ANKRD1

8DP -15830 - FAM157A 55864 + TGTATGAATG TATGAAAAC--HBV

3 1 18 3807 6 132078040 CTGF -126868 -
MIR548AJ

1 37151 - HBV--CCTCAACCCAAGACCC

3 1 18 3809 6 26014093 TRIM38 -26764 + HIST1H1A 2938 - TTACCTTCCTCCCTTGGA--HBV

3 1 18 3816 10 114424498 AFAP1L2 -19720 - ABLIM1 6611 - TGAGCGTAAAGCTTAGn-HBV

3 1 18 3817 7 141417781
TMEM17

8B intron +

HBV--
nnnnnnnnnnnnAGCAGTTACTTTGT

GCC
3 1 18 3820 0

3 1 18 3824 19 31760568 THEG5 -167018 +
LINC0153

3 265293 + HBV--AGAAGTGGGCATTGGCAC
3 1 18 3827 0



M
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ACCEPTE
D

ACCEPTED MANUSCRIPT

6464
6565
6666
6767

6868
6969

7070
7171

7272

7373
7474

7575
7676

7777

7878

7979

8080
8181
8282

8383
8484

8585

8686
8787
8888

8989

9090

9191
9292

9393

9494
9595

AA BB CC DD EE FF GG HH II JJ KK LL MM NN OO PP QQ RR

3 1 18 3828 11 77870013 AAMDC intron +
TACCTAACCC 

TGAGACAGnnnnnnnnnnnn--HBV
3 1 18 3826 X 47283158 USP11 -34830 + ZNF157 87441 + HBV--TTTCTGCACATTTGTGTCA 
3 1 18 3780 223 3024 0
3 1 18 3914 225 34 20 56183987 CBLN4 -178515 - MC3R 64744 + HBV-CAATTACCCAGTCTTA

3 1 18 3933 224 61 14 76815170 ANGEL1 -2230 - LRRC74A 11211 + HBV--GTATAAACTCTCAATG
3 1 18 3940 226 286 0

3 1 18 3913 12 43966271
TMEM11

7 intron + AAGAAGGGGATAAGAGn--HBV
3 1 18 3938 3 192177304 FGF12 intron - HBV--AGGCCTATAAAATTAT

3 1 18 3944 13 58018244 PCDH17 -289313 +
LOC1019

26897 147582 HBV--TGGTGACACATACCTGTAGT

4 1 18 3572 218 433 22 17962139 MICAL3 intron -
CTTGCTGACTGCACATATCACATG

nn--HBV
4 1 18 3592 219 193 5 59451480 PDE4D intron - HBV--GATAACCGACATATAC

4 1 18 3567 217 611 2 233776390
MROH2

A intron + HBV--CTGTTGCCCAGGCTGGA
4 1 18 3566 11 17429330 ABCC8 intron - HBV--ATCCCACCCTCAAGGCAA

4 1 18 3583 1 18438305 IGSF21 -59822 + KLHDC7A 42624 +
HBV--

GGGCTCAAATCCCTGTTCACAGC

4 1 18 3584 16 12584020 SNX29 -9731 + CPPED1 75778 -
HBV--

nCTAAGTGTCCCTCCTGTGGT

4 1 18 3586 1 86733852
SH3GLB

1 intron + CTGTGGTGGGAGTATTTATA--HBV

4 1 18 3588 2 82108916
LOC1005

07201 -641970 - LOC1720 747886 + HBV--AATTTCTATTGGGATTCACC
4 1 18 3394 194 103 0
4 1 18 3385 191 102 10 53190646 MBL2 -418946 - PCDH15 612124 - TTTCAAAAAATTAATTTTTA--HBV

4 1 18 3397 192 433 9 92115984 SPTLC1 -510 -
LOC1001

28076 16849 + within 40 nts to left of 92115984
4 1 18 3383 0

4 1 18 3388 21 30829731
KRTAP7-

1

at 
beginnin
g of exon -

HBV--
TGTGAAGGGTAAGTTACCCA

4 1 18 3389 2 225661861 NYAP2 -7843 +
LOC6467

36 480932 + HBV--TTACAGACATGCACCAC
4 1 18 3391 0
4 1 18 3401 0

4 1 18 3403 7 34592630
NPSR1-

AS1 intron - within 40 nts to right of nt 34592630

4 1 18 3406 5 80192447
SERINC

5 intron -
within 200 nts to right of nt 

80192447

4 1 18 3408 8 37724134
LOC101
929622 intron +

HBV--
ACTCCAGCCCTCCTCTGAGC

4 1 18 3409 0

4 1 18 3410 X 42702365 CASK -779331 -
PPP1R2P

9 75000 -
GCTTTCTATATGTTGATGACTn--

HBV

4 1 18 3381 15 76549357 SCAPER intron - HBV--CAAATGTCCAACAAT
4 1 18 3414 196 103 6 101585725 GRIK2 intron + GGAAAAAGGTGACACAT--HBV



M
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ACCEPTE
D

ACCEPTED MANUSCRIPT

9696

9797

9898
9999

100100

101101
102102

103103

104104
105105
106106
107107

108108

109109
110110
111111

112112
113113

114114
115115

116116

117117
118118
119119
120120

121121
122122
123123

124124

125125
126126

127127

128128
129129

130130
131131

AA BB CC DD EE FF GG HH II JJ KK LL MM NN OO PP QQ RR

4 1 18 3426 199 103 12 119899421 CIT -22130 - CCDC64 90422 +
TTATAGCCCTACTAGAGTTGn--

HBV

4 1 18 3424 199 433 14 49382149
>100000

0 RPS29 194522 - CCCTATTGACTCCAGT--HBV

4 1 18 3427 195 433 5 25236337
LOC3401

07 -395754 - >1000000 ACCCTGTCAACCACTAT--HBV
4 1 18 3432 197 433 0

4 1 18 3421 3 311592 CHL1 intron +
TCACCTGGAGGAGAGATAGCAnn

n--HBV

4 1 18 3428 12 11576834
LINC012

52 -12433 + ETV6 73019 +
GTAAGATGGG AGGTTTTACA--

HBV
4 1 18 3433 0

4 1 18 3434 19 22193758 ZNF676 intron +
TAGGACCTTGTGCTTTTCCTA--

HBV

4 1 18 3441 5 134702101 SEC24A intron + HBV--TTATCACAATATCTTGAAAAC
4 1 18 3447 1 50290811 ELAVL4 -87026 + DMRTA2 127853 - AACATGCCCCATACCTGCn--HBV
4 1 18 3449 0
4 1 18 3451 0

4 1 18 3452 20 21547651 NKX2-2 -33625 -
LOC1019

29625 22372 + HBV--GTGCATTCATTCAGAGGT

4 1 18 3453 21 31409049 TIAM1 intron -
HBV--

nnnnnnCATTGCTCCCACACTCAT
4 1 18 3454 13 101380239 NALCN intron - AGAATTCAAGACTAACAA--HBV
4 1 18 3443 10 11454352 CELF2 -117679 + USP6NL 6157 - HBV--CCAGGCCTCCCTCACTG

5 1 22 3837 228 34 18 50627176 MAPK4 intron +
HBV--

TTGGACCAGCCTTGGGGAATGG
5 1 22 3859 231 17 7 18845205 HDAC9 intron + HBV--CTCACTCACCTGTTAATTT

5 1 22 3868 230 36 2 227134742 COL4A4 intron -
HBV--

nGAAAGAATGACTCACTCACG
5 1 22 3857 229 103 7 130562490 COPG2 intron - ATGTATTGCCTATGACAAG--HBV

5 1 22 3831 227 342 2 106990648
ST6GAL

2 -103541 -
MIR548A

U 159016 - AAACACTGACACATGTTGG--HBV

5 1 22 3840 20 24835069
SYNDIG

1 -168452 + CST7 114160 +
HBV--

TCACTCAGTTTGTGTTTTGGT
5 1 22 3846 0
5 1 22 3852 0
5 1 22 3856 0

5 1 22 3858 6 91787314 CASC6 -96886 - >1000000 GTAGAAAACAATAGGATTT--HBV
5 1 22 3861 0
5 1 22 3866 0

5 1 22 3867 4 91384710 CCSER1 intron + GCAACAAAATTACAGATTGT--HBV

5 1 22 3870 13 83040027
>100000

0
RNU6-

67P 258043 - TGAGTACTCA AAAATGATnnn-HBV
5 1 22 3871 0

5 1 22 3889 233 89 2 40345643 SLC8A1 intron -
HBV--

TTGAAAACCCTCTATGCAGCC

5 1 22 3872 232 472 15 85124435 PDE8A intron + HBV-- CCACCCTCCTCCCCAGCTC
5 1 22 3896 12 10664319 STYK1 intron - CACATCCCTAACTTCCTATT--HBV

5 1 22 3948 235 145 5 36000096 UGT3A1 intron - TGGAGAGGCCCAATGGAAT--HBV
5 1 22 3962 238 63 0
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132132

133133

134134
135135

136136
137137

138138

139139

140140

141141

142142

143143
144144

145145

146146

147147
148148

149149

150150

151151

152152

153153
154154

155155

156156

157157

158158
159159

160160

161161

AA BB CC DD EE FF GG HH II JJ KK LL MM NN OO PP QQ RR
5 1 22 3965 238 89 3 172866200 ECT2 -44726 + SPATA16 23156 - GCTTTTATAGTTGAGGCC--HBV

5 1 22 3949 234 102 3 59285332 C3orf67 -543323 - FHIT 463977 -
TACCTGGGTTTGAACACTGTTnn--

HBV

5 1 22 3952 237 32 7 34326405 BMPER -170533 +
NPSR1-

AS1 20106 - HBV--ATCCACAAAACACCTCC
5 1 22 3960 236 165 16 13311889 SHISA9 -76479 + ERCC4 -610142 + HBV--AAAATTAAATGAACTAAAAT

5 1 22 3963 2 238285839 PER2 intron -
HBV--

AGCCCTGCAGGATTTTACAACC
5 1 22 3967 0

5 1 22 3972 5 122419019 SNCAIP intron +
within 30 nts to right of nt 

122419019

5 1 22 3977 21 38923345
LOC400

867 intron - TGTTTCTGAATTACATGTC--HBV

6 1 24 4330 240 89 19 7905028 MAP2K7 intron +
GTACCTCTCGCTTCACACACAC--

HBV

6 1 24 4316 241 103 2 6468883
LINC012

47 -93461 -
LINC0048

7 260284 -
AAACAACACAGCATTCTCTAAA--

HBV

6 1 24 4332 240 368 9 36836065 PAX5 intron -
HBV--

CTGCCAAGGCTGGGCAGTCGTT

6 1 24 4312 9 127214489
RALGPS

1 intron +
CGATTTCCTTTGTATTTTATnnnnnn

nnnnnnnnn-HBV
6 1 24 4321 1 96939372 PTBP2 -124323 + DPYD 138371 - within 700 nts to left of nt 96939372

6 1 24 4322 1 70708693
LOC101
927244 intron +

GTCAGACAAGTAATGACTGnnnnn
nnn--HBV

6 1 24 4325 4 178108873
LINC010

98 -118123 + >1000000
CTGATTTAATAATGTATATnnnnnnnn

nn--HBV

6 1 24 4327 2 117314398
>100000

0 DDX18 500280 + HBV--TAATTATAGCTTGTCCTC
6 1 24 4331 0

6 1 24 4265 244 34 4 177597656 AGA -155153 -
LINC0109

8 131100 + ACTTAGAAGCTTTACCTC--HBV

6 1 24 4267 244 34 4 6436575
PPP2R2

C intron -
TGTTACTAGAGTTCCCTnnnnnnnn

n--HBV

6 1 24 4282 244 23 18 35811667 GALNT1 -99833 + MIR187 93150 - TTTATGTCCAACAGAC--HBV

6 1 24 4299 243 281 1 38590990
LINC013

43 -367223 - RRAGC 260624 -
AAAAGAAAAAAATTAACTTAG--

HBV

6 1 24 4286 242 1133 10 109779347
>100000

0 XPNPEP1 85418 -
TTTGGGCCATTACAGTATCAGC--

HBV
6 1 24 4288 0

6 1 24 4291 3 197076755 DLG1 intron -
GTACAAAGGCCCAGCCTAGCA--

HBV

6 1 24 4293 10 37470521
LINC009

93 -123493 +
MTRNR2L

7 130916 - HBV--AGGCAGGAGAATCGCTTGA

6 1 24 4248 246 36 15 96814536 SPATA8 -28921 +
LINC0092

3 928079 -
TTTTTTGTGTTTTTAAAAAG C--

HBV

6 1 24 4241 247 42 16 48633860 N4BP1 -23651 - CBLN1 645543 - HBV--TGGGTCCAGACCACTTAAG
6 1 24 4239 245 381 1 225490526 ENAH intron - HBV--ATCGCACCACTGCACTCC

6 1 24 4237 2 137801750 THSD7B -124033 +
LOC1019

28273 77003 - TTGAGATGTTTTTCAGACTT--HBV

6 1 24 4238 10 20246294 PLXDC2 intron +
TGTGTGTCTGTGTGACGAnnnn--

HBV
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162162

163163
164164
165165

166166
167167
168168

169169

170170

171171
172172

173173

174174

175175

176176
177177

178178

179179

180180

181181

182182
183183

184184
185185

186186

187187

188188
189189

190190
191191

192192

AA BB CC DD EE FF GG HH II JJ KK LL MM NN OO PP QQ RR

6 1 24 4240 X 42769983 CASK -846949 -
PPP1R2P

9 7382 - CACCTCCATAACATACTT--HBV

6 1 24 4244 13 109667013 MYO16 -460177 +
LINC0067

6 61260 +
CCCCCGCGTACAGGCACCCC--

HBV
6 1 24 4246 3 7363687 GRM7 intron + GGTCTCATCCAAT--HBV
6 1 24 4257 0

6 1 24 4259 5 160337249 CCNJL intron -
GGTCTTGAACTCCTGGGCTG--

HBV
6 1 24 4262 X 7273398 STS intron + HBV--CAAGTCATAGGACTGAAAA
7 1 28 3092 173 1078 16 10557512 EMP2 intron - HBV--nnAAAGTTTTTCCTTGG

7 1 28 3088 169 1149 1 49161242 AGBL4 intron -

HBV--
TCTGGAGCCGAGTACATGGTTCC

T

7 1 28 3093 168 2136 X 2621766 CD99P1 intron - HBV--TTATTGATTACTCATGTAC

7 1 28 3104 172 3730 7 84597817
LOC1019

27378 -13499 + SEMA3D 397738 - HBV--ACTATTCACAATAGCAAAAG
7 1 28 3106 170 2919 1 28945637 EPB41 intron + AGTGTTTAATATTCTGTT--HBV

7 1 28 3108 171 3583 4 60356734
>100000

0
MIR548A

G1 565884 + within 40 nts to left of nt 101626622

7 1 28 3085 1 101626622
LINC013

07 -249309 + OLFM3 175944 -
ACACTGCTTCCTGCATCCCAGC--

HBV

7 1 28 3087 9 133048728 GTF3C5 intron + within 150 nt to left of nt 133048728

7 1 28 3089 4 141763033 IL15 -29046 + INPP4B 265748 -
CTCACACCTGTAATCCTAGCn--

HBV
7 1 28 3090 0

7 1 28 3094 X 42098007 CASK -174973 -
PPP1R2P

9 679358 -

HBV--
nnnnnnnnnnnnnnTAAACTCGGCCC

AGTCCTAGTT

7 1 28 3096 22 41681252 NHP2L1 intron -
TCAAAATTTATTTTTGTTCTTA--

HBV

7 1 28 3097 6 37762238 MDGA1 -64248 - ZFAND3 57292 +
ATTTCTGAGATAGGACTTGnn--

HBV

7 1 28 3098 2 58948077
LINC011

22 intron +
AAATTTGCAT CCACAACCATCATA-

-HBV

7 1 28 3103 9 83598638 FRMD3 -60205 - IDNK 24410 + GAGCCAGGGTCAGAGATGA--HBV
7 1 28 3109 0

7 1 28 3115 4 137562796 PCDH18 -30298 -
LINC0061

6 464626 - HBV--AATTCTCAATCATTTTCCTTT
7 1 28 3490 212 458 12 45245364 ANO6 intron - TTAATAATTGTTAATATA--HBV

7 1 28 3468 211 488 3 50252682 GNAI2 intron +
AGGACCAGCCTGGCCAACTTG--

HBV

7 1 28 3456 208 1741 11 2162764 INS -1555 - TH 1164 - CTGAGCCATGCCACAGCnn--HBV

7 1 28 3465 209 1910 20 34711080
TP53INP

2 exon + GCACCAAGGGAGTGTGCA--HBV
7 1 28 3460 210 1826 0

7 1 28 3459 207 2763 4 24192173
PPARGC

1A -302096 - MIR573 328018 - TGGGAAAAATGTTG--HBV
7 1 28 3469 2 240851310 KIF1A -31002 - AGXT 17434 + GGTCCTCCTGCCCCACAT--HBV

7 1 28 3473 13 33533086
STARD1

3 intron -
within 224 nts to right of nt 

33533086
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193193

194194

195195

196196
197197
198198

199199
200200
201201
202202
203203

204204

205205
206206
207207

208208

209209

210210
211211
212212
213213
214214

215215

216216
217217

218218

219219

220220

221221

222222

223223
224224

225225

AA BB CC DD EE FF GG HH II JJ KK LL MM NN OO PP QQ RR

7 1 28 3474 7 81645681
LOC100
128317 intron within 246 nts to left of nt 81645681

7 1 28 3476 12 131196616
LINC012

57 intron + ACAACGTTCACTTTTGTT--HBV

7 1 28 3478 4 7378006 SORCS2 intron + HBV--TACCCCGATTTTCATGAAG

7 1 28 3488 13 88267974
LINC003

97 -457454 -
LINC0043

3 272854 + HBV--AAAGAGCTTCAGCACAGCA
7 1 28 3491 17 77440729 SEPT9 intron + GTCTGCACAGGTGCCATC--HBV
7 1 28 3493 7 121815754 FAM3C -419386 - PTPRZ1 57350 + HBV--ATTCTGAACATCACTAAT

7 1 28 3118 176 282 7 138078614 AKR1D1 intron + HBV--CTCAAAGCTATATTCTC
7 1 28 3124 177 282 4 73404654 ALB intron + CTAAGGAAAGTGCAAAG--HBV
7 1 28 3147 178 283 16 49649494 ZNF423 intron - TCAGCACATATTTAGGAT--HBV
7 1 28 3127 174 484 9 113373775 HDHD3 exon - HBV--AATTATCCCCAACATGG
7 1 28 3151 175 635 11 9570069 ZNF143 -41545 + WEE1 3611 + HBV--AAACAAAACATTGTTAAG

7 1 28 3125 8 116876744
RAD21-

AS1 exon + HBV--nCAGCCATAAAAAAGAAAAA

7 1 28 3134 3 34918259
LOC101
928135 intron - HBV--ATCCCACAATAGGAAA

7 1 28 3135 3 184416743 CHRD -26908 + EPHB3 145055 + CAGGTGCGCCATAACT--HBV
7 1 28 3137 0

7 1 28 3139 4 99319381 ADH1B intron - within 65 nts to right of nt 99319381

7 1 28 3143 X 25732927 ARX -716979 - MAGEB18 405415 + AAACCATAATATACTTCCT--HBV

7 1 28 3145 7 151906852
PRKAG2-

AS1 -27629 + GALNTL5 49526 + HBV--GGCCATTTTCACAATATA
7 1 28 3146 4 38669922 KLF3 intron + HBV--AAGATGTCCTCTTAA
7 1 28 3148 0
7 1 28 3150 19 58353102 A1BG exon - HBV--GAGTCTCCAGGTGGGC
8 1 30 2190 89 124 2 26707285 KCNK3 intron + CCCTGGAATGGAGTGCG--HBV

8 1 30 2198 87 229 3 61826795 PTPRG intron +
HBV--

TGATAGCCAAATATAAAACGTTC

8 1 30 2160 88 220 2 105319156
TGFBRA

P1 intron - AAAAATAAAAAAATCAACAn--HBV
8 1 30 2164 0

8 1 30 2166 11 97872304
>100000

0 >1000000 GCTGGCTGAGCCCAGCA--HBV

8 1 30 2168 16 71569561 TAT-AS1 intron - HBV--TAACTCCTGCGCTCAAGTG

8 1 30 2176 7 5495114 FBXL18 intron - HBV--AGGAAAAGGCTCCCACTGC

8 1 30 2185 5 141370942
PCDHG

B3 exon + HBV--AGGAGAACCTGGATGGCAG

8 1 30 2281 94 52 2 145043331 TEX41 intron +
HBV--

GAAGTATTCCAAGATAACTTCT

8 1 30 2301 93 37 6 26933909 GUSBP2 intron -
TTTCTACAGG 

TCTGAAGGTGnnnnnn-HBV
8 1 30 2300 91 320 0

8 1 30 2278 90 1416 2 48690599 LHCGR intron -
 CGTAGTTCTCTGAATAAGTTCT--

HBV
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226226
227227

228228
229229

230230
231231
232232

233233
234234

235235
236236
237237

238238

239239
240240

241241

242242
243243

244244
245245

246246

247247

248248

249249

250250

251251

252252

253253

254254
255255

256256

257257
258258

AA BB CC DD EE FF GG HH II JJ KK LL MM NN OO PP QQ RR

8 1 30 2283 X 85244654 ZNF711 intron +
AACCTTTGGAATGCGCGAGGG--

HBV
8 1 30 2310 11 18736493 PTPN5 intron - HBV--TTTATGTCTAAATCCTCA

8 1 30 2376 99 51 6 29796259
LOC554

223 intron +
CCTTGGCTAGAAAGAGGTCAT--

HBV
8 1 30 2372 97 141 0

8 1 30 2385 96 456 2 235320752 SH3BP4 -265038 + AGAP1 173336 + HBV--AGAAGAGTAACCTCACGG
8 1 30 2371 98 407 0
8 1 30 2365 95 727 0

8 1 30 2394 12 112612606 PTPN11 -102693 +
MIR1302-

1 82427 - HBV--CCAGGCTGGAGTGCAATGA
8 1 30 2401 9 69450228 APBA1 intron - within 50 nts to right of 72065144

8 1 30 2403 2 105251384 GPR45 -7917 +
TGFBRAP

1 13005 - HBV--TTGTCTGAGATGTGGGGA
8 1 30 2404 0
9 1 39 3498 213 680 X 127219938 PRR32 -398153 + ACTRT1 831023 - HBV--CTACATGTTTCCTTTTT

9 1 39 3497 215 1030 14 97905846
LOC1001

29345 -219188 -
LINC0155

0 19763 - TTAGTGTCTCTCTGCCC--HBV

9 1 39 3503 214 621 8 55581800 XKR4 -55649 + TMEM68 156943 - within 40 nts to right of nt 55581800
9 1 39 3504 0

9 1 39 3507 20 32473272 NOL4L intron - within 40 nts to right of nt 32473272

9 1 39 3514 12 70661649 PTPRR intron -
HBV--

CCAAACCCAGCACGGGTGAGGG
9 1 39 3520 8 107067262 ABRA -297018 - ANGPT1 182219 - CAGGCAACAGGCAATA--HBV

9 1 39 3522 17 69641717
LINC014

83 intron + TTTGTTTAAGGGGAA--HBV
9 1 39 3526 10 82316697 NRG3 intron + HBV--TCTACTTCTAAAAAGGA

9 1 39 3033 161 89 11 13471813 BTBD10 -8516 - PTH 20240 -
HBV-

nACATTCTCTATGTGGAAAGG

9 1 39 3035 162 89 5 65472122
ADAMT

S6 intron - within 40 nts  to left of nt 65472122

9 1 39 3037 163 89 2 214293678 SPAG16 intron + HBV--GTGGAGCTCATGGTTTGCT

9 1 39 3014 X 103653329 TCEAL1 -22381 + MORF4L2 22168 -
within 368 nts to right of nt 

103653329

9 1 39 3019 11 23679528
CCDC17

9 -819102 - LUZP2 817441 + HBV--AAGAGGAGCTTTATTGAG

9 1 39 3020 5 7013040 MIR4278 -185119 - MIR4454 256262 - HBV--CTTGATGATTAGTCAT

9 1 39 3034 19 16397387
EPS15L

1 intron - HBV--GCTGTTTGTCTATTTTAC

9 1 39 3040 15 83141577
HDGFR

P3 intron -
CTCCATGACTGACAGTTTTnnn--

HBV

9 1 39 3045 1 211474161
LINC004

67 -41626 + RD3 2360 - HBV--GATAGAGTAGTTGGGGACT
9 1 39 3047 0

9 1 39 3065 166 238 8 10720956 C8orf74 -20363 + SOX7 2811 -
HBV--

CAACCCAGCACAACAAATGGAT

9 1 39 3055 164 1063 1 227011883
CDC42B

PA intron -
within 40 nts to right of nt 

227011883
9 1 39 3082 165 881 10 99810494 ABCC2 intron + HBV-- AGTGTGTGGGATTGGGAA
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259259

260260
261261

262262
263263
264264

265265
266266

267267

268268

269269

270270

271271

272272
273273

274274
275275

276276
277277

278278

279279

280280
281281

282282

283283

284284
285285

286286
287287

288288

289289

AA BB CC DD EE FF GG HH II JJ KK LL MM NN OO PP QQ RR

9 1 39 3068 2 217797054 DIRC3 -40461 - TNS1 2734 -

HBV--
CTGTCTCGAAAGAAAAAAAGAAA

A

10 2 14 2541 109 52 9 108587789
>100000

0 ACTL7B 266799 -
HBV--

TTTTTTCCTGAAATTCCAGGTGAC
10 2 14 2548 108 51 5 118860870 DTWD2 intron - HBV--TTAGAAATGATTTTGC

10 2 14 2551 107 131 5 15736111 FBXL7 intron +
ATGTAAAGAAAAGATAATTT A--

HBV
10 2 14 2535 2 202829835 ICA1L intron - ACTTTCTAAGTTTTGCTT--HBV
10 2 14 2538 8 59680145 TOX -560937 - CA8 508718 - CTCCAGCATTTTGAGTA--HBV

10 2 14 2539 10 79033393
ZMIZ1-

AS1 intron - HBV--nnACCGGTTTACATCATTCA
10 2 14 2543 0

10 2 14 2544 X 80115837 TBX22 -84068 +
CHMP1B2

P 112651 - TGATTCTCATTCTCTCTCT--HBV

10 2 14 2546 20 30421656
MLLT10P

1 -18194 - DEFB115 836007 + TGCATATGGAATGTCTG--HBV

10 2 14 2641 114 51 15 56886666
LOC145

783 exon - CATAATATAGCACTTTCT--HBV

10 2 14 2619 111 187 7 27605977 HIBADH intron - HBV--CAAACAAGTTATTCATCCCA

10 2 14 2648 112 187 22 46582920 CELSR1 -45750 - GRAMD4 43840 + HBV--CTTTCTCTCTCTTTTGTCT

10 2 14 2639 113 131 4 35618971 >100000 ARAP2 447026 -

HBV--
nnnnnnnnnnnGCCTAAAGCCCTTT

GTTC
10 2 14 2655 110 229 9 113532006 RGS3 intron + GAGGAGCTGGGTGTC--HBV

10 2 14 2612 15 82533803
GOLGA6

L17P -7319 + RPS17 2946 - HBV--TCAAGCGATCCTCCTGCCT
10 2 14 2618 0

10 2 14 2633 1 239589547
>100000

0 CHRM3 39525 + ATATAGTTTTATGTAATTTCC--HBV
10 2 14 2634 13 108744898 MYO16 intron + ACTACTTAAACCTTACC--HBV

10 2 14 2637 4 163110338 MIR4454 -16710 - NAF1 16369 -
within 227 nts to right of nt 

163110338

10 2 14 2654 20 64198457 MYT1 intron +
CCTGATGCCT CAGCACCTGCn--

HBV

10 2 14 2714 122 77 1 156213591
PMF1-
BGLAP intron + TCCTGCCGCAGCTTCCCAA--HBV

10 2 14 2710 123 51 1 220059053 BPNT1 intron - TGGATTGTGGTTTTTCTAG--HBV

10 2 14 2739 125 187 11 29116520 MIR8068 -638972 - KCNA4 893220 -
TGCTCTCCTACACAGTAAGCAA--

HBV

10 2 14 2728 120 220 6 78898764
IRAK1B

P1 exon + HBV--TTGTAAGACAAAATTT

10 2 14 2731 121 297 9 135085520 OLFM1 intron +
HBV--

TAAGGATTGGGTGCCAGGCA
10 2 14 2747 124 642 0

10 2 14 2750 118 622 14 34499424 SPTSSA -37162 - EAPP 16504 - within 40 nts to right of nt 34499424
10 2 14 2727 119 938 16 13012870 SHISA9 intron + HBV--AACTTTCAAAAGGGT

10 2 14 2751 126 1183 7 55119726 EGFR intron + HBV--AACCCACCCTGCCCTGGTT

10 2 14 2707 6 116104675 NT5DC1 intron +
within 73 nts to right of nt 

116104675
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ACCEPTE
D

ACCEPTED MANUSCRIPT

290290

291291

292292

293293
294294
295295

296296

297297

298298

299299

300300
301301

302302
303303
304304

305305

306306
307307
308308
309309

310310

311311

312312

313313
314314

315315

316316
317317
318318

319319

320320

321321

AA BB CC DD EE FF GG HH II JJ KK LL MM NN OO PP QQ RR

10 2 14 2715 19 1594102 MBD3 -1341 - UQCR11 3052 -
HBV--

CCGGGTTCAAGTAATTCTCCTG

10 2 14 2732 22 30891961 OSBP2 intron +
TGGTCAGGGAGCAGCTTTGC--

HBV

10 2 14 2736 12 90641768
LINC009

36 -929816 +
LINC0061

5 276254 +
CCTCTTTTGCCCAAGTGGnnn--

HBV

10 2 14 2744 13 62942327
LINC004

48 -134968
LINC0037

6 240773 - HBV--TTAATAATTGAAATTAATAATT
10 2 14 2749 9 24112457 ELAVL2 -286392 - IZUMO3 430757 - HBV--AGTGATTCTCCTGCCTCA
10 2 14 2753 0

11 2 14 3716 276 69 8 139110753
COL22A

1 -196747 - KCNK9 490084 -
HBV--

TGGCAACATCCTCAGGCACA

11 2 14 3718 277 94 12 84639238
>100000

0 SLC6A15 220249 - HBV--AGTTACTTCATAAATGTTGA

11 2 14 3712 3 93470513
>100000

0 PROS1 402523 - TTTGATGTAATTTTATATTTT--HBV

11 2 14 3724 17 48056784 NFE2L1 uncertain +
within ~300 nts to right of nt 

48056784

11 2 14 3730 1 56829818 C1orf168 -10122 - C8A 24951 +
within ~650 nts to right of nt 

56829818
11 2 14 3735 0

11 2 14 3680 268 34 19 6696480 C3 intron -
ACTCCTTCTGCAGGGTGAGTGA--

HBV
11 2 14 3678 0
11 2 14 3681 0

11 2 14 3683 21 23640805
D21S208

8E -255970 -
LOC1019

27869 663744 -
TTTCTTATAATGGTGTATTTAT--

HBV

11 2 14 3702 269 69 10 25705185
LINC008

36 intron +
HBV--

nAGTGGTGTAATCTCGGCTCAC
11 2 14 3695 0
11 2 14 3696 14 89211096 FOXN3 intron - HBV--AGTTTCATTACCTTTCAAC
11 2 14 3700 13 109021744 MYO16 intron + within 40 nts to left of nt 109021744

12 2 16 2581 130 183 3 24420709 THRB intron -
HBV--

GGCAAGGTTGCAGAGTAAAAGGA

12 2 16 2597 132 642 2 23042543
LOC1027

23362 -504256 KLHL29 342883 + AATAACTCTTTATACAGTTAn--HBV

12 2 16 2666 131 1008 15 35925508
DPH6-
AS1 -66507 + MIR4510 1347 +

GTGCAGCGGAGAGTGACCCAn--
HBV

12 2 16 2589 129 2000 6 67321866
>100000

0
LOC1027

23883 733484 HBV--nAGGTTAGACTTTTTGGTAC
12 2 16 2555 127 1733 0

12 2 16 2567 128 1058 5 163114132 GABRG2 -958593 + CCNG1 323438 + ACAGGCAGAATTTCGAAT--HBV

12 2 16 2562 11 58955636
GLYATL

1 exon + HBV--CAGCTGGATGTCTCTTATTC
12 2 16 2570 0
12 2 16 2576 0

12 2 16 2582 3 126580557
TXNRD3

NB intron -
TGTGTGGATTCCAATCCCCA--

HBV

12 2 16 2583 5 111924181 NREP intron -
GCTGGGCCTTGGATTTTGAAA--

HBV

12 2 16 2690 137 187 6 70563526
FAM135

A -2352 + SDHAF4 3395 +
CTAGGTTGCTGCAGTTTCATn--

HBV
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ACCEPTED MANUSCRIPT

322322

323323

324324

325325

326326

327327

328328

329329

330330

331331

332332

333333
334334
335335
336336

337337

338338

339339

340340

341341

342342

343343

344344

345345

346346

347347
348348

349349

350350

AA BB CC DD EE FF GG HH II JJ KK LL MM NN OO PP QQ RR

12 2 16 2667 134 342 8 143235361
GPIHBP

1 -18191 + ZFP41 11459 + HBV--nGATTACAGGATCACACACA

12 2 16 2682 133 723 2 201601445
ALS2CR

11 intron - HBV--AGAGAAGAGCAAGATAGAG

12 2 16 2700 135 407 10 105121512 SORCS3 intron +
ATTGATTTCTCATTTCGTTTTT--

HBV

12 2 16 2677 3 130938818 ATP2C1 intron +
within 242 nts to right of nt 

130938818

12 2 16 2762 144 187 3 98942382 DCBLD2 -41056 - COL8A1 696213 + within 40 nts to right of nt 98942382

12 2 16 2797 140 297 1 167529560 CD247 -10950 - CREG1 11453 -
HBV--

nnAGTTGTATTAGCTTTCTATTGC

12 2 16 2764 141 643 19 45585702 OPA3 -838 - GPR4 4062 - TCAGAAATAAATTTAAGGAC--HBV

12 2 16 2803 142 1008 6 135385661 AHI1 intron -
CTATGAAACCTGTGAATTTnnnnnn

nnn--HBV

12 2 16 2759 138 4023 9 98882830
GALNT1

2 -32749 + COL15A1 60882 + TTTCTTTCCCCTGTCCTTTC--HBV

12 2 16 2802 139 1733 18 70984299 GTSCR1 -333442 -
LINC0154

1 535664 -
ATGCCACTTACTAGGTGGACAAA--

HBV

12 2 16 2809 143 5596 1 41476045 SCMH1 -233902 - EDN2 2279 -
HBV--

TCTTGCTCACGAGAGTCCTCCC

12 2 16 2765 2 97732650 ZAP70 intron +
CATCTGTTGGCTCTTGGAGAAnn--

HBV
12 2 16 2768 0
12 2 16 2771 0
12 2 16 2792 0

12 2 16 2810 2 37547391 QPCT -174564 +
CDC42EP

3 94490 -
HBV--

TCGTGGGGTGACAAAGGGG

13 2 17 1959 36 340 X 15162293 MOSPD2 -240956 + ASB9 81693 - CCAATAAGCTAGATTCATTnn--HBV

13 2 17 1921 34 907 14 106076891 ADAM6 -104622 -
LINC0022

6 210782 + HBV--ATAAAATGTATATGCA

13 2 17 1955 36 1456 22 30596440 PES1 intron -
HBV--

CTCTGAAAGTGCTGGGATTA

13 2 17 1953 35 2000 3 194843049
LOC1005

07391 -60881 + XXYLT1 225234 - CTGTAATCCCAGCACTTT--HBV

13 2 17 1918 2 218668259 RNF25 exon -

approx. HBV--
nCCAGAGTGAAGCAGACATACTG

T

13 2 17 1922 6 151518831
CCDC17

0 intron + GCAGGTTTTTATTAAGGACT--HBV

13 2 17 1925 19 11034381
SMARC

A4 intron +
within 272 nts to right of nt 

11034381

13 2 17 1926 18 7331602 LRRC30 -99558 + PTPRM 236216 + HBV--nTCTGCCTCCCGGGTTCA

13 2 17 1927 X 63317858
>100000

0 SPIN4 29369 - within 270 nts to left of nt 63317858

13 2 17 1928 X 154096037 MECP2 intron -
~ATGTTACTACTGAGGCCGTA--

HBV
13 2 17 1930 8 104886603 LRP12 -297579 - ZFPM2 432315 + AAATCCTCTCTTTAGC--HBV

13 2 17 1940 10 42917286 BMS1 -82349 +
LINC0126

4 61730 - HBV--AAAAAATTGAAAACAGC

13 2 17 1943 1 56570009 PPAP2B intron - HBV--CTTATATAGTGTTTGTCA
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ACCEPTED MANUSCRIPT

351351

352352

353353

354354

355355

356356

357357

358358

359359

360360
361361

362362
363363

364364

365365
366366

367367
368368

369369

370370
371371

372372

373373
374374

375375

376376
377377

378378
379379

380380

AA BB CC DD EE FF GG HH II JJ KK LL MM NN OO PP QQ RR

13 2 17 1952 22 45236843
KIAA093

0 intron - CCCCTTCTCTGCACCA--HBV

13 2 17 1966 11 122647359
MIR100H

G -444297 - UBASH3B 8330 +
AGACCCTTCAGGGACTGCCT--

21n--HBV

13 2 17 1887 39 938 1 4160502
LINC013

46 -207919 +
LOC2846

61 251548 +
~GTCATGTCTACCCTCTGCAGGG

T--HBV

13 2 17 1880 40 1456 16 33963253
ENPP7P

13 -178978
LINC0027

3 195331 - CCCTTGCCTCTTGGCGC--HBV

13 2 17 1895 38 907 12 14259231 GRIN2B -279143 - ATF7IP 106400 +
AGGATAACAGTAATAACCGCnn--

HBV

13 2 17 1874 37 7967 19 44757015 BCL3

at intron-
exon 

junction + HBV--AGACACCGCTCCACCTGG

13 2 17 1866 7 144526314 TPK1 intron - HBV--TGAAAAAGATTTTGAGATAG

13 2 17 1875 5 89178690
MEF2C-

AS1 -146314 +
LINC0133

9 979648
HBV--

GGGCAGAGAAATGTGATATG

13 2 17 1876 15 36350632 MIR4510 -423709 + C15orf41 228970 + within 95 nts to left of nt 36350632

13 2 17 1907 18 64044086
SERPIN

B8 -54712 +
LINC0030

5 35922 - HBV--GGTTTGTTCTTTCACTGT
13 2 17 1914 0

13 2 17 1790 28 187 20 2333235 TGM3 intron +
TTCTGTCTCCAGAGAAACTGnnnn

nnnnnnnnnn--HBV
13 2 17 1777 25 152 0

13 2 17 1786 27 182 21 8218570
LOC100
507412 intron +

GGATTATGACTGAACGCCTC--
HBV

13 2 17 1792 26 327 16 49022236 N4BP1 -412027 - CBLN1 255681 - GCGGGATTTGGGGTCCTTC--HBV
13 2 17 1780 0

13 2 17 1787 9 13895619
LINC012

35 -464290 -
LINC0058

3 32351 +
HBV--

nnnAGCAAGTCACAAAAATTC
13 2 17 1795 9 5896764 MLANA intron + CTTTGTGGTAACTGTAAT--HBV

13 2 17 1798 20 60862076
MIR548A

G2 -297451 +
LOC1005

06470 216987 + HBV--nnGATGCTGATTCAGTT

13 2 17 1800 22 46675898
GRAMD

4 intron + GCCCCTGCCTCGGATGC--HBV
13 2 17 1806 0

13 2 17 1814 3 56852545
ARHGE

F3 intron - HBV--TGTTTTTTCAAATTCTCTA

14 2 19 1120 11 616 5 166605125
>100000

0
CTB-
7E3.1 300096 - HBV--ATAGCCTTATCCTGTGCTT

14 2 19 1122 10 1149 0

14 2 19 1090 8 5163 18 6873174
ARHGA

P28 intron + within 144 nts to right of 6873174

14 2 19 1114 9 4450 20 45127011 WFDC12 -2546 - PI3 47887 + AATATCTCTTTGGGATCCTG--HBV
14 2 19 1106 0

14 2 19 1107 10 94808237
CYP2C1

9 intron + HBV--GGCCAGTATAATGT
14 2 19 1126 0

14 2 19 1408 15 1674 6 18042875 KIF13A -55252 - NHLRC1 77611 - HBV--GAAGGACCCCCTCCGCTGC
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ACCEPTED MANUSCRIPT

381381

382382

383383

384384
385385

386386
387387

388388

389389
390390

391391
392392

393393
394394
395395

396396
397397

398398
399399
400400

401401

402402

403403

404404

405405
406406

407407

408408
409409

410410

411411

412412

AA BB CC DD EE FF GG HH II JJ KK LL MM NN OO PP QQ RR

14 2 19 1407 8 30152539 MBOAT4 -7855 - DCTN6 3757 +

HBV--
nnnGCACGTGCCACCATGCCTCG

C

14 2 19 1416 2 210601408 CPS1 intron +
within 102 nts to right of nt 

210601408

14 2 19 1421 5 165964705
>100000

0
CTB-
7E3.1 940516 -

within 40 nts to right of nt 
165964705

14 2 19 1426 12 98467233
SLC9A7

P1 -10088 -
LOC6437

70 18310 - TAAAATTTCTCTTGCAG--HBV
14 2 19 1149 13 1078 2 191820569 NABP1 -132047 + SDPR 13736 - TAACATTTTACAGAGCCC--HBV

14 2 19 1152 13 1078 3 117825136
LINC009

01 -892898 >1000000 HBV--TGTTAGGTCATCATTTTT
14 2 19 1133 12 1272 0

14 2 19 1129 4 82746892 SCD5 intron -
within 150 nts to right of nt 

82746892

14 2 19 1131 11 115683192 CADM1 -178669 -
LINC0090

0 72140 - within 175 nts to left of nt 115683192
14 2 19 1141 0

14 2 19 1156 2 162841092 KCNH7 -2345 - FIGN 768459 -
within 150 nts to right of nt 

162841092
15 2 23 4037 257 151 9 133881250 VAV2 intron - CACAGAGAGATGCGGCCn--HBV

15 2 23 4006 255 238 15 48030022 SEMA6D -255799 + SLC24A5 90949 +
TTTCAACTCTTCCTGCCTGCnnnn

nnn--HBV
15 2 23 4026 257 282 0
15 2 23 4005 256 1149 7 55452043 LANCL2 -18301 + VOPP1 18564 - HBV--TACCAATAGTAGGAC

15 2 23 3986 254 587 4 48345308 SLAIN2 intron + HBV--CAGAGTAAATAATCCCAGTT
15 2 23 3997 11 46715331 ZNF408 -9370 + F2 3861 + HBV--CCCAGCTATTTGGGAG

15 2 23 4007 3 156586391 SSR3 -31191 -
TIPARP-

AS1 86779 -
HBV--

GTTTAGGCTTGGCCTCATCACA
15 2 23 4021 1 56978586 C8B -12446 - DAB1 19319 - within 40 nts to left of nt 56978586
15 2 23 4029 1 47331883 STIL -17736 - CMPK1 1913 + within 450 nts to left of nt 47331883

15 2 23 4030 14 103885822
LINC006

37 -27773 + C14orf2 26465 - HBV--CCTAGCCCCTACCCTTCTC

15 2 23 4032 4 180692756
>100000

0
LINC0029

0 371333 -
within 1200 nts to left of nt 

180692756

15 2 23 4035 10 36055897 PCAT5 -254977 + >1000000 HBV--GTCCATTCTTCTCATC

15 2 23 4038 1 238589902
LOC1001

30331 -661583 + >1000000
within ~750 nts to right of nt 

238589902

15 2 23 4065 259 282 3 106417444 CBLB -548401 -
LINC0088

2 692345 -
HBV--

TGTAAACAAACATAAAGACGCA
15 2 23 4094 262 277 7 46572890 IGFBP3 -651618 - TNS3 702263 - HBV--ACCCTGTGAATTATGGTGC

15 2 23 4069 264 433 18 35238602 MAPRE2 -95134 + ZNF397 2427 + within 162 nts to left of nt 35238602

15 2 23 4070 258 1949 5 143874163 HMHB1 -53444 + YIPF5 288054 +
HBV--

ATAAATCTTGCTGTAAGGAAAC
15 2 23 4102 260 635 0

15 2 23 4087 261 1149 12 115153653 TBX3 -469489 - MED13L 804922 - within 150 nts to left of nt 115153653

15 2 23 4096 263 5500 3 41060244 ZNF621 -520449 + CTNNB1 139208 -
TTGAAGATCAGCTGACTGTAG--

HBV

15 2 23 4080 14 50308450 L2HGDH intron -
HBV--

ATACACAGATGGCAAAGAAGCAC
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413413
414414

415415

416416

417417

418418

419419

420420

421421

422422
423423
424424

425425

426426

427427
428428

429429

430430

431431

432432

433433

434434

435435

436436

437437
438438

439439

440440

441441

AA BB CC DD EE FF GG HH II JJ KK LL MM NN OO PP QQ RR

15 2 23 4082 7 74481611
GTF2IR

D1 intron + within 40 nts to left of nt 74481611
15 2 23 4086 0

15 2 23 4098 2 217439396 DIRC3 intron -
ACAACAACGCAGTGAGATAAA--

HBV

15 2 23 4101 19 13956220 DCAF15 exon + within 40 nts to left of nt 13956220

15 2 23 4158 266 2000 4 71601151 SLC4A4 -29064 + GC 140542 -
HBV-

TTTAAATTAAAACAGTTTTAGGCA

15 2 23 4183 267 2743 3 187060777
ST6GAL

1 intron +
TTGGCAGCTAGAAGTTGAAATT--

HBV

15 2 23 4152 265 5999 10 95731408 ENTPD1 intron + TGTAGCCGACCCTCTG--HBV

15 2 23 4162 2 118067070 CCDC93 -52907 - INSIG2 21403 + within 75 nts to left of nt 118067070

15 2 23 4182 X 122468185
>100000

0 GRIA3 716057 + TGTTTTTCCGATAGATnnnn--HBV

15 2 23 4184 4 99313535 ADH1B intron -
HBV--

ATTTTTTAACTAAAAATTAATAA
15 2 23 4185 8 62536589 NKAIN3 intron + CTGTGGGGACACATCTAGn--HBV
15 2 23 4186 1 235916277 LYST -32569 - NID1 59554 - TCAACCTCTGGAATTTTGA--HBV

15 2 23 4189 1 77621722 ZZZ3 intron - HBV--CAGGAGGATTTCCTGTGCC

16 2 25 1327 22 74 8 81218770 PAG1 -106702 - FABP5 61712 + ACACCTGGCTAACTTTTTAT--HBV

16 2 25 1294 18 92 14 67211985 FAM71D intron + HBV--GCATTCTTCTGCCAGGAGA
16 2 25 1293 19 104 10 91904675 TNKS2 -39200 + FGFBP3 1912 - HBV--CAGTGCAAAATATTTTCTG

16 2 25 1307 21 187 16 67667074 C16orf86 intron + CGCTCAGACCTCCGAGGTn--HBV

16 2 25 1336 20 297 2 123807565
>100000

0 CNTNAP5 217721 + GACACACAGAGCTATGTGG--HBV

16 2 25 1295 17 322 8 27291710 TRIM35 intron -
HBV-

nnnnnATAAACAATAGTTTATTT

16 2 25 1297 22 2083373
>100000

0 >1000000
CAAGAGCAAGACTCTACCTCAAnn

nnnnnnn--HBV

16 2 25 1299 19 33855613 KCTD15 -39852 + LSM14A 316833 + within 68 nts to left of nt 33855613

16 2 25 1319 17 51215233 MBTD1 intron -
TAATCATGTG GTAAGGTTAGn--

HBV

16 2 25 1322 13 24214004
SPATA1

3 intron + HBV--ATATGTTTGGTTTCAGA

16 2 25 1342 4 120612857 MAD2L1 -546123 - PRDM5 79055 -
within 40 nts to right of nt 

120612857

16 2 25 1447 16 87 4 19740344
>100000

0 SLIT2 513219 + AACAGTATCTCCATTTT--HBV
16 2 25 1428 6 105969056 PREP -565932 - PRDM1 117263 + TTGTTAATTGCACCACTTC--HBV

16 2 25 1430 15 88988718 MFGE8 -75286 - ABHD2 99431 +
AGGGGAATTGCAATAGAGAAA--

HBV

16 2 25 1431 7 84719888
LOC1019

27378 -145045 + SEMA3D 275667 - within 19nts to left of nt 84719888

16 2 25 1435 13 99366339 UBAC2 intron +

HBV--
GTTTTGAATTCTGAGTTTTTCCCC

A
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ACCEPTED MANUSCRIPT

442442

443443

444444

445445

446446

447447
448448
449449

450450

451451
452452
453453

454454

455455
456456

457457

458458

459459

460460

461461

462462

463463

464464

465465

466466

467467

468468

469469

470470

AA BB CC DD EE FF GG HH II JJ KK LL MM NN OO PP QQ RR

16 2 25 1441 11 59932181 TCN1 -65613 - OOSP1 10697 + within 40 nts to right of nt 59932181

16 2 25 1449 3 114575127 ZBTB20 intron -
CAGAACTAGGACTAGAAACT--

HBV

16 2 25 1452 15 68279727 FEM1B intron + HBV--ATTCTTTTTTAGGTTTAAACA

16 2 25 1684 23 51 X 83326924
>100000

0 POU3F4 181336 +
GCATGGGAGAACTGAGTTAGC--

HBV

16 2 25 1670 24 74 11 8636670 TRIM66 intron -
TCTGATATCTCTTGAAATCTTTn--

HBV

16 2 25 1679 24 32 13 111000244
ANKRD1

0 -85137 - ARHGEF7 115282 +
AGCTGNGAAGTCATGCAGCnnnnn

nnnnnnnnnnnnnn--HBV
16 2 25 1662 4 166433955 TLL1 -329498 + SPOCK3 299429 - AATTAAACTACATGCATTT--HBV
16 2 25 1664 0

16 2 25 1671 17 76492339 RHBDF2 intron - TGGAGACAGCATAACCCAG--HBV

16 2 25 1672 17 51221932 MBTD1 intron -
TTACAAATCTATGAGAAATCAnnnn

n--HBV
16 2 25 1675 0
16 2 25 1689 9 75945996 PCSK5 intron + TGTTGATTTGGTGACTGTT--HBV

16 2 25 1691 1 33546240 CSMD2 intron -
HBV--

AATCCCATTATTTTTCAGGGA

16 2 25 1696 6 85461810 NT5E intron +
HBV--

AGGCCTGGCACCCCTCTCTCT
16 2 25 1700 0

17 2 25 4133 251 23 3 30662750 TGFBR2 intron + CTAGAAAATTATCATGGGC--HBV

17 2 25 4106 249 39 X 121427083 MIR3672 -56030 >1000000 GTATTATTTAGAACCATTATn--HBV

17 2 25 4119 250 18 1 15673431 RSC1A1 -11709 + PLEKHM2 10900 + TGTTGGCTGTTGTTTCTGC--HBV

17 2 25 4123 248 3105 10 83077447 NRG3 -90268 + >1000000
TTAGGAATTCTAGCAGAACAnnnnn-

-HBV

17 2 25 4134 17 53822748
C17orf11

2 -835096 + KIF2B 129 + TTTCTCGCCATGATCCGGA--HBV

17 2 25 4136 3 107279636
LINC008

83 intron + CAAAACAATTTTGAAACAGC--HBV

17 2 25 4195 252 286 8 29637026 DUSP4 -286748 -
LINC0058

9 84233 -
ATGGCTAACATGGTGAAACnn--

HBV

17 2 25 4194 1 22316535 MIR4418 -50235 + ZBTB40 135315 + CCCTTTAGGTCCTCACAn--HBV

17 2 25 4200 3 48634649
SLC26A

6 intron -
HBV--

nnAGCTTTCACCAGTCAGGAA

17 2 25 4149 13 43863539
CCDC12

2 intron - HBV--AAGAAAGTATAAACTGTTT

17 2 25 4150 8 34897319
LINC012

88 -32521 + UNC5D 338137 + CTAGAATTTGGAAACTATCT--HBV

17 2 25 4151 2 65831213 SPRED2 -398691 - MIR4778 527035 - within 40 nts to right of nt 65831213

18 2 28 2154 4 99208221
LOC100
507053 intron - HBV--nAGATTTTTAAGTAACTTCC

18 2 28 2157 3 228861 CHL1 intron +
TAATGGTGGA 

TTTGACCnnnnnnnnn--HBV
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471471
472472

473473
474474
475475

476476

477477

478478

479479

480480

481481

482482

483483
484484

485485

486486

487487

488488

489489

490490

491491

492492

493493

494494

495495

496496
497497

498498

AA BB CC DD EE FF GG HH II JJ KK LL MM NN OO PP QQ RR

18 2 28 2237 102 561 6 144643887 UTRN intron +
HBV--

nnnnnnnnTTTTTTAAAATTGCTTTA
18 2 28 2232 101 1628 1 152152524 TCHH -37070 - RPTN 1070 - HBV--TCAATAGTCCCNGGG

18 2 28 2235 103 1976 7 132456666 PLXNA4 intron - HBV--CCCAGGATGGGCCAGG
18 2 28 2233 0
18 2 28 2322 100 780 14 30602427 G2E3 intron + TAATTATTTTTTTGTGTACT--HBV

19 2 29 2901 152 187 12 5179216 KCNA5 -133227 +
LOC1019

29584 54779 - CCATCCTAGACTGTCCTGn--HBV

19 2 29 2916 151 295 5 180023238 RNF130 intron -
HBV--

nTATGTAGATATGCAGGAGTTA

19 2 29 2902 149 652 17 13949850
HS3ST3

A1 -348721 -
CDRT15P

1 74647 +
HBV--

nnnCATTTGAACTCCCTTGTG

19 2 29 2909 150 923 4 141492489
LOC1005

07639 -159872 IL15 144106 + HBV--AGTCATTCCTGTTCCA

19 2 29 2904 1 6882297 CAMTA1 intron +
AACAGGGAGCATATGGCCTGT--

HBV

19 2 29 2906 15 45445807 C15orf48 -12358 + SLC30A4 36673 - within 40 nts to left of nt 45445807

19 2 29 2910 13 100363997 PCCA intron +
AGCATATTCATCCTGGCTGGCnn--

HBV

19 2 29 2911 11 134107675 JAM3 intron +
within 168 nts to right of nt 

134107675
19 2 29 2919 3 71405086 FOXP1 intron - CTTCCAAATTTCCACACA--HBV

20 3 23 1242 33 77 19 5695130 LONP1 intron -
HBV--

nnnnnATGGTATCTTAGATGCCGCT

20 3 23 1259 14 5895 14 25412634 STXBP6 -362337 - >1000000
HBV--

AGTACGGCCGACTCCAGTAGGGA

20 3 23 1252 2 209661342 MAP2 intron +
HBV--

nnTCCACACCAACCCCCCAAG

20 3 23 1261 4 188076224 ZFP42 -71175 + TRIML2 15047 -
HBV--

CAACTCTCCTGCCTCAGCCT

20 3 23 1274 7 2634434 TTYH3 intron +
CTGCCTCCCCTGGTGAGGAGTT

GC--HBV

20 3 23 1282 20 7007038 BMP2 -226775 +
LINC0142

8 139428 -
within 130 nts to right of nt to right of 

7007038

20 3 23 1652 47 561 4 104040223 TACR3 -320407 - CXXC4 428082 - CTCAGCCCCAAATCTCCTTA--HBV

20 3 23 1635 49 1008 8 142522537 ADGRB1 intron + TCTGTTGGGGGCTTCAG--HBV

20 3 23 1657 48 1171 3 71755312 GPR27 -135 + PROK2 16342 -
HBV--

nGATTGTACTGACTCCTTTGGG

20 3 23 1643 43 878 14 74508971 LTBP2 intron -
HBV--

GAGGAAGACAGCCGATGGC

20 3 23 1637 45 2682 3 160892148 PPM1L intron +
CGGAACTTAAAATAAAATAA A--

HBV

20 3 23 1610 42 5162 1 24169532 IFNLR1 exon -

HBV--
nnnnCATAGAACATAGCAGCTCCT

T
20 3 23 1626 0

20 3 23 1639 2 43087375
LOC1027

23854 -47832 - ZFP36L2 136943 -
HBV--

nCCCAGAAGATTCCCTGGATCC
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499499

500500

501501

502502
503503

504504
505505

506506

507507
508508

509509

510510

511511

512512

513513
514514
515515

516516

517517

518518
519519

520520

521521

522522

523523
524524

525525

526526

527527

528528
529529

AA BB CC DD EE FF GG HH II JJ KK LL MM NN OO PP QQ RR

20 3 23 4346 275 103 13 101318155 NALCN intron - HBV--TTTCTCACCCGCTGGGCTC

20 3 23 4380 274 131 11 38776300
LINC014

93 -121051 >1000000
TCAAACTATCCCTGTTTGCAG--

HBV

20 3 23 4372 273 938 4 100518926 EMCN -633 -
LINC0121

6 -141352 -
CATGTCTCATTTTAGCTGATC--

HBV

20 3 23 4352 272 3960 19 16582352 MED26 intron -
CCAGGCCCTTTGCAGGGATT--

HBV
20 3 23 4344 0

20 3 23 4357 6 53339039 ELOVL5 intron - CACATTTCTTTTTTAAAA--HBV
20 3 23 4370 0

21 3 25 1019 2 448 1 87599199
LINC001

52 -177688 +
MIR4435-

2 30560 + TAGAAAAAAAACAGAGAA--HBV

21 3 25 1003 1 9340 4 150947664 LRBA intron - CTACTTTTATTCAAATTAGTn--HBV
21 3 25 1023 19 35718988 KMT2B intron + within 40 nts to left of nt 35718988

21 3 25 1027 5 160700946 ATP10B intron -
TGCCCAAGACTTTGATTnnnnn--

HBV

21 3 25 1033 4 40213910 RHOH intron +
HBV-- 

GTGGCACACACCTGTAATCC

21 3 25 1076 7 36 5 138825876 CTNNA1 intron +
TGGTGCATGTTAAAATTTACTAGC--

HBV

21 3 25 1048 5 157 14 28830705
LINC015

51 -35911 + PRKD1 746532 - AAGGCAAGAG CAACTTAAn--HBV

21 3 25 1047 6 157 14 53355603
LOC1019

27620 -198075 + MIR5580 592823
HBV--

TTCCTCTTCACTCCCTCTGG
21 3 25 1069 7 157 0
21 3 25 1059 4 468 6 124090679 NKAIN2 intron + HBV--TTCTTCACCTCAGTGAAAC

21 3 25 1049 3 468 19 1362668 MUM1 intron +
GAGTGAGGGATGGCCCAGTGnnn

nn--HBV

21 3 25 1056 2 231520846
LINC004

71 -6507 - NMUR1 2313 - HBV--AAGGGTAGGCATATGC

21 3 25 1073 1 16174389 EPHA2 -18302 -
ARHGEF1

9 23714 -
HBV--

TCCGTCTCCCCACTTCCTGGA
21 3 25 1077 6 112053921 FYN -180469 - WISP3 153 + HBV--CTAGAGAGGACCCGGAG

21 3 25 1082 14 42981436
>100000

0 >1000000 ATAAAAAGTAATTCAGTn--HBV

22 3 26 1351 51 129 7 19465891 FERD3L -320470 - TWISTNB 229570 - CTAGGGTTAATTATAAGCAG--HBV

22 3 26 1460 53 131 22 46083145
PRR34-

AS1 -24623 +
MIRLET7

BHG 2851 + CTTTTAAGACCCCACATG--HBV

22 3 26 1368 55 187 4 71522210 SLC4A4 intron +
within 160 nts to right of nt 

71522210
22 3 26 1366 54 55 0

22 3 26 1458 52 229 2 228922189 SPHKAP -740591 - PID1 103442 -
AATCGTCATGCTGTCTTCCCAGA--

HBV

22 3 26 1463 56 642 4 34525030
LOC1019

28622 -485137 >1000000 HBV--AGAAACCTGTTCAAATGTA

22 3 26 1353 50 1018 10 106279691
LOC1019

27549 -459358 SORCS1 293971 - ATTCTTTAGAAGACATTT--HBV

22 3 26 1352 5 91362806 LUCAT1 -48404 - ARRDC3 5917 -
GTCAGGTTCTGCTTCTAACACTA--

HBV
22 3 26 1376 0
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530530
531531

532532

533533

534534
535535

536536

537537
538538

539539

540540

541541

542542

543543

544544

545545

546546
547547
548548
549549
550550
551551
552552

553553

554554
555555
556556
557557
558558
559559

560560

561561

562562

AA BB CC DD EE FF GG HH II JJ KK LL MM NN OO PP QQ RR

22 3 26 1550 60 194 X 112390159
ZCCHC1

6 intron +
HBV--

ATTTAGGATCGTGGCCAGGTG
22 3 26 1571 61 642 0

22 3 26 1566 58 2062 1 152568994 LCE3E -2241 - LCE3D 10389 - HBV--TTTTTTTTCTTTAGCACTTTG

22 3 26 1536 57 4011 13 86522191 SLITRK6 -722843 -
MIR4500

HG 921795 -
HBV--

CCAGTCAGAACAGCTGGATATTA

22 3 26 1581 59 3580 13 84077248 SLITRK1 -195741 -
LINC0033

3 63353 + HBV--CTTCCCAGAGGATAAAAGG
22 3 26 1541 0

22 3 26 1572 9 133971570 VAV2 intron -
HBV--

GTGACACTGGCCTCCTGCCCAG

22 3 26 1590 4 88503047 HERC5 intron +
HBV--

GTTTTTCTGTTTTCTATTTTAT
22 3 26 1591 9 130611406 FUBP3 intron + TGCCTGATTTGGGGAGA--HBV

22 3 26 1596 6 47571362 CD2AP intron +
CAAAAAGTAGACTGCACAGG--

HBV

22 3 26 1604 1 179363185 SOAT1 -4506 + AXDND1 2534 +

HBV--
nnnnnnnnAGGAAAATAAAGAAAAA

AAG

23 3 26 1996 80 74 21 21342520 NCAM2 intron +
AGCCTCTCCAGTATGGCTnnnnnnn

nnnnn--HBV

23 3 26 1970 79 2120 9 16239116 C9orf92 intron -
HBV--

AACCTGGTGGGAAGTAATTGA

23 3 26 1983 10 58643783 BICC1 intron + within 10 nts to right of nt 58643783

23 3 26 1990 5 136506566 TRPC7 -141090 - SPOCK1 468731 -
HBV--

nnnGGCTAGGGACCTGGAGTCTG

23 3 26 2056 83 399 18 38531347 MIR4318 -874132 +
LINC0066

9 675576 -
CATACCCCTCTCACCTCCCA--

HBV

23 3 26 2016 83 652 2 134257821 MGAT5 intron +

HBV--
nnnnnATTAGTTTGCAGTCTCTTTT

T
23 3 26 2044 84 1008 20 50917312 ADNP intron - HBV--CAAGTCAGTCAGATGATT
23 3 26 2023 81 1241 7 112447138 IFRD1 intron + HBV--TGAATCAAAGTCATCAAT
23 3 26 2012 82 36781 1 147668340 ACP6 intron - TCAACCATAAAGGCAGAAG--HBV
23 3 26 2032 9 100084919 ERP44 intron - HBV--AAAAAGCTAAGGCAACA
23 3 26 2033 7 148773668 CUL1 intron + CGCTGCGTGTGTCTTCTC--HBV
23 3 26 2037 0

23 3 26 2041 21 29369825 BACH1 -7929 +
BACH1-

IT2 2675 + TTCTCAGGCCTTGGGTCC--HBV

23 3 26 2055 1 17703791
ARHGEF

10L -5916 + ACTL8 51521 +
HBV--

GCAGTGGTGCGAACCCGGC
23 3 26 2064 86 2000 17 54406378 KIF2B -581166 + TOM1L1 494312 + AAAGATTAATAGTGGTGATT--HBV
23 3 26 2088 6 6255684 F13A1 intron - AGTGGCAAAGCATGATn--HBV
23 3 26 2093 17 9077838 NTN1 intron + HBV--GACCGGTGTTCAATGAAT
23 3 26 2096 12 91829905 DCN -646876 - C12orf79 155070 - TGCCCACTTTGGCCTCCC--HBV
24 3 26 2413 104 18469 0

24 3 26 2445 10 89427337 IFIT5 -6335 +
SLC16A1

2 2956 -
~TCCCTTGTGT GAACAGTTCn--

HBV

24 3 26 2470 105 157 8 138771194
COL22A

1 intron -
HBV--

nnnnCTCCCTGCACCTCACCAGG

24 3 26 2483 106 337 17 43882099 MPP2 intron - within 40 nts to right of nt 43882099
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563563
564564

565565

566566

567567

568568
569569
570570

571571

572572
573573

574574

575575

576576
577577

578578

579579

580580
581581
582582
583583

584584

585585
586586

587587

588588

589589

590590

591591
592592
593593

594594

AA BB CC DD EE FF GG HH II JJ KK LL MM NN OO PP QQ RR

24 3 26 2485 6 97144652 MMS22L intron -
ATTTAGGGAAAGTGGCTATnnn--

HBV
24 3 26 2490 0

25 3 27 2530 145 25 3 76457907 ZNF717 -672324 - ROBO2 582235 +
GGTTGGGGCGACTGGGACACAG-

-HBV

25 3 27 2836 148 57 9 37277108 ZCCHC7 intron + CCAAGTATAGACTCATT--HBV

25 3 27 2849 147 1733 X 134523203 HPRT1 -22535 + MIR450B 16981 -

HBV-
nnnnnnnnGTAGCTGGGATTACAGG

CATGT

25 3 27 2847 146 4320 2 67602716 ETAA1 -192315 +
LOC1019

27701 193337 - GATAGAGATATAAAATTCTG--HBV
25 3 27 2818 X 3084718 ARSF intron + HBV--nAAAAGGACCTAGATA
26 3 29 1530 69 340 X 31805791 DMD intron - HBV--AAATATTTTTTCCCCTGGA

26 3 29 1497 64 643 20 12456031 BTBD3 -529436 +
LOC1019

29486 409172 - TAAAGTGTCTAATTCA--HBV

26 3 29 1503 66 1008 13 102146298 FGF14 intron -
HBV--

TGGTGGCTGACAAATTATTTT
26 3 29 1469 62 2670 5 151860329 GLRA1 intron - GAACACTTGTTTTCATCAT--HBV

26 3 29 1495 65 2062 1 31238043 NKAIN1 intron -
HBV--

CCTCTGCAATCCTCAGGGATA

26 3 29 1486 19 48962442 BAX -644 + FTL 2866 +
ACAGAGAGGAAGGGACCTnn--

HBV

26 3 29 1516 6 81890783
LINC015

26 -76591 - IBTK 279455 - HBV--ACCACACACGGTCAAACAA
26 3 29 1523 0

26 3 29 1525 6 103795610
>100000

0 HACE1 932482 -
HBV--

AAAGAAAAAAAAACCCTATGG

26 3 29 1533 12 29009007 CCDC91 -458841 + FAR2 139995 + GAACCTGTGATTCCTATTT--HBV

26 3 29 1828 78 1008 6 18822120
MIR548A

1 -250240 +
LOC1019

28519 246422 ATCACTAATAGGTAATCTATT--HBV
26 3 29 1823 76 1624 6 17025890 ATXN1 -264400 - STMND1 76367 + TGCCATGCTGGGTTTCA--HBV
26 3 29 1835 71 3032 X 44242614 EFHC2 intron - HBV--AAAATTCAAACTTGAAACT
26 3 29 1855 72 2536 1 19390206 CAPZB intron - HBV--AAGAAATCACATTAAGTGT

26 3 29 1821 70 8389 17 55013573 STXBP4 intron +
GTGCCTTTGGATAATTTTAGTCC--

HBV

26 3 29 1833 154 10501 7 156783566 LMBR1 intron -

HBV--
nnGACTGTGTCTATCATTGGGTTG

GT
26 3 29 1853 74 24258 2 209999103 UNC80 exon + TAGCCATTTTATAGGTTAAA--HBV

26 3 29 1861 73 12438 18 63467741 VPS4B -45222 -
SERPINB

5 9169 +
CTTTCTACTCGATGGGTGCCAA--

HBV

26 3 29 1830 8 117071845
SLC30A

8 intron +
AGATTTACCATTTTAATAAACATG--

HBV

26 3 29 1854 11 106701739
GUCY1A

2 intron - HBV--ATTTATTGTGTATTTTCAGA

26 3 29 2964 156 5713 2 62405869 B3GNT2 -181138 + TMEM17 94351 -
HBV--

TATATGCAAATGATGATAATAAT

26 3 29 2968 155 12556 Y 8834727 TTTY11 -17345 -
RBMY1A3

P 482333 - GTCAGTTCCTCACCCCT--HBV
26 3 29 2939 153 56293 8 31564713 WRN -391611 + NRG1 75038 + HBV--AGCTACCATTAGACCCAGC
26 3 29 2945 0

26 3 29 2973 4 100034797
LOC256

880 intron TGTACAATAGTCAGGGATGT--HBV
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AA BB CC DD EE FF GG HH II JJ KK LL MM NN OO PP QQ RR

*Integration sites are listed by patient age within each patient group (IT, gp1; HBeAg(+) IA, gp2; HBeAg(-), gp3).  A "0" in the insert site location means that 
we were unable to locate a unique integration site based on the cell sequence at the virus/cell junction.  A string of n's at the virus/cell junction means that 
the indicated number of bases differed between the consensus human DNA sequence (GRCh38) and the observed sequence.  For instance, HBV--
nnGACTGTGTCTATCATTGGGTTGGT means that two bases at the virus/cell junction aligned neither with published HBV sequences nor the human 
sequence GRCh38.  For integrations that did not map to either introns or exons, we determined the distance to the nearest genes to the left or right of the 
integration (within 1,000,000 base pairs).
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Supplementary Table 4:  Observed and Predicted Maximum Sizes of Hepatocyte Clones 
 

 
Group 1: 
Immune 
Tolerant 

 
 
 

Age 

 
 

Largest Clone (95% 
confidence interval) 

Predicted Size 
(k=0.0015) (95% 

confidence 
interval) 

Predicted Size 
(k=0.004) (95% 

confidence 
interval) 

Predicted Size 
(k=0.01) (95% 

confidence 
interval) 

Pt. 1 15 2035 (899-3974) 392 (384-401) 786 (771-801) 1663 (1625-1702) 
Pt. 2 17 1087 (423-1987) 403 (394-412) 824 (807-842) 1737 (1699-1775) 
Pt. 3 18 3024 (1404-6369 408 (399-417) 839 (821-856) 1783 (1744-1822) 
Pt. 4 18 611 (212-1458) 408 (399-417) 839 (821-856) 1783 (1744-1822) 
Pt. 5 22 472 (170-1234) 430 (423-437) 907 (889-926) 1932 (1890-1973) 
Pt. 6 24 1133 (465-2205) 441 (436-452) 931 (912-950) 2002 (1963-2041) 
Pt. 7 28 3730 (1021-10306) 469 (461-477) 1007 (986-1027) 2136 (2095-2178) 
Pt. 8 30 1416 (689-3182) 484 (476-494) 1043 (1022-1064) 2202 (2156-2247) 
Pt. 9 39 1063 (479-2677) 552 (540-565) 1187 (1162-1212) 2555 (2495-2614) 

Group 2: 
HBeAg(+) 

IA 

     

Pt. 10 14 1183 (240-3904) 388 (379-396) 770 (755-785) 1632 (1595-1670) 
Pt. 11 14 94 (36-197) 388 (379-396) 770 (755-785) 1632 (1595-1670) 
Pt. 12 16 5596 (1811-24563) 397 (388-406) 807 (791-823) 1699 (1661-1738) 
Pt. 13 17 7967 (2915-18429) 403 (394-412) 824 (807-842) 1737 (1699-1775) 
Pt. 14 19 5163 (2318-13361) 414 (406-423) 855 (838-871) 1842 (1803-1880) 
Pt. 15 23 5999 (2711-11001) 438 (430-446) 916 (897-936) 1973 (1934-2013) 
Pt. 16 25 322 (120-1391) 451 (444-459) 949 (930-968) 2050 (2009-2091) 
Pt. 17 25 3105 (1384-6212) 451 (444-459) 949 (930-968) 2050 (2009-2091) 
Pt. 18 28 1976 (901-6234) 469 (461-477) 1007 (986-1027) 2136 (2095-2178) 
Pt. 19 29 923 (386-2031) 476 (467-484) 1021 (1000-1042) 2171 (2125-2217) 

Group 3: 
HBeAg(-) 

IA 

     

Pt. 20 23 5895 (2448-10727) 438 (430-446) 916 (897-936) 1973 (1934-2013) 
Pt. 21 25 9340 (4824-16022) 451 444-459) 949 (930-968) 2050 (2009-2091) 
Pt. 22 26 4011 (1702-7735) 457 (449-465) 966 (947-985) 2076 (2040-2113) 
Pt. 23 26 36781 (16898-54565) 457 (449-465) 966 (947-985) 2076 (2040-2113) 
Pt. 24 26 18469 (8782-35639) 457 (449-465) 966 (947-985) 2076 (2040-2113) 
Pt. 25 27 4320 (1953-9098) 464 (456-472) 989 (969-1008) 2099 (2056-2143) 
Pt. 26 29 56293 (21517-112562) 476 (467-484) 1021 (1000-1042) 2171 (2125-2217) 

Hepatocyte clones sizes (point estimates and 95% confidence interval) were determined from end point 
dilution data (e.g., Figure 1B) using the program Sim19.  Predicted sizes were determined for different daily 
rates of hepatocyte destruction (k) using the program Csize8. The programs are described in Materials and 
Methods/Supplementary Methods & Materials. Shaded areas indicate that the maximum observed clone 
size in a patient could not be explained either by a low level of hepatocyte turnover thought to characterize 
healthy adults, 0.15% per day (k=0.0015) (3x the number of S phase hepatocytes)31 or, where indicated, by 
higher turnover rates of 0.4% or 1% per day (k=0.004; k=0.01). 
 


