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Objective: To develop an injectable dosage form of the daily oral HIV drugs, tenofovir
(T), lamivudine (L), and dolutegravir (D), creating a single, complete, all-in-one TLD
3-drug-combination that demonstrates long-acting pharmacokinetics.

Design: Using drug-combination-nanoparticle (DcNP) technology to stabilize mul-
tiple HIV drugs, the 3-HIV drugs TLD, with disparate physical-chemical properties,
are stabilized and assembled with lipid-excipients to form TLD-in-DcNP. TLD-in-
DcNP is verified to be stable and suitable for subcutaneous administration. To
characterize the plasma time-courses and PBMC concentrations for all 3 drugs,
single subcutaneous injections of TLD-in-DcNP were given to nonhuman primates
(NHP, M. nemestrina).

Results: Following single-dose TLD-in-DcNP, all drugs exhibited long-acting profiles in
NHP plasma with levels that persisted for 4weeks above predicted viral-effective
concentrations for TLD in combination. Times-to-peak were within 24 hr in all NHP
for all drugs. Compared to a free-soluble TLD, TLD-in-DcNP provided exposure
enhancement and extended duration 7.0-, 2.1-, and 20-fold as AUC boost and
10-, 8.3-, and 5.9-fold as half-life extension. Additionally, DcNP may provide more
drug exposure in cells than plasma with PBMC-to-plasma drug ratios exceeding one,
suggesting cell-targeted drug-combination delivery.

Conclusions: This study confirms that TLDwith disparate properties can bemade stable
by DcNP to enable TLD concentrations of 4weeks in NHP. Study results highlighted the
potential of TLD-in-DcNP as a convenient all-in-one, complete HIV long-acting product
for clinical development.
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Introduction

The 3-HIV oral drugs – tenofovir (TFV: T),
lamivudine (3TC: L), and dolutegravir (DTG: D) –
TLD is the WHO’s recommended first-line treatment
for people living with HIV. Daily oral TLD is effective
for people living with HIV to achieve undetectable
plasma virus levels only when taken consistently. Pill
fatigue and discontinuation of daily TLD tablets
increase the risk of viral rebound and progression to
AIDS [1].

Cabenuva is an approved injectable containing two
separate long-acting products, cabotegravir and rilpivir-
ine. Initiation of cabenuva typically includes one-month
daily tablet intake, with verified viral suppression before
every 1-or-2-month intramuscular (i.m.)-assisted injec-
tion [2]. Its implementation has proven challenging [3,4].
Cabenuva lacks hepatitis B virus (HBV) coverage and
is not recommended for people living with HIV and
HBV [5].

Building on success in formulating water insoluble-and-
soluble HIV drugs with biocompatible lipid-excipient to
form drug-combination-nanoparticles – referred to as
DcNP platform [6–8] – we investigated whether short-
acting TLD can be transformed into a single long-acting
formulation (with TFV providing HBV coverage).
A TLD drug-combination was stabilized by two-lipid-
excipients in suspension as an injectable, referred to as
TLD-in-DcNP. This product-candidate was character-
ized by long-acting pharmacokinetics in NHP. We
found that LA-TLD can be formulated in the DcNP
dosage form, and a single subcutaneous injection in
NHP yields sustained concentrations for all 3-HIV drugs
for 4weeks.
Materials and methods

Chemicals
Tenofovir/TFV PMPA [((1-(6-amino-9H-purin-9-yl)
propan-2-yl)oxy)methyl] phosphonic acid (Laurus,
India), lamivudine/3TC and dolutegravir sodium/
DTG (Cipla, India) were cGMP-grade. Lipoid GmbH
(Germany) provided cGMP DSPC (1,2-distearoyl-sn-
glycero-3-phosphocholine) and mPEG2000-DSPE [N-
(carbonylmethoxypolyethyleneglycol-2000)-1,2-distear-
oyl-sn-glycero-3-phosphoethanolamine sodium salt].

Methods
TLD-in-DcNP injectable suspension was prepared fol-
lowing a process previously detailed [6,9], which was
adjusted here. The adjustments were that 5.66 mmol
DTG; 5.97mmol HCl; 40.27 mmol DSPC and
4.49mmol mPEG2000-DSPE were dissolved in 472ml
ethanol at 708C; 28ml of 200mM NaHCO3 buffer
Copyright © 2023 Wolters Kluwer Hea
containing 5.85 mmol TFV and 5.85 mmol 3TC was
added; solution was spray-dried (4M8Trix Unit; Pro-
CepT, Belgium) under controlled-solvent-removal pro-
cess to getTLD-in-DcNP powder.TLD-in-DcNP powder
in 0.45% w/v NaCl–20mMNaHCO3 buffer suspension
was held at 758C; homogenized (Emulsiflex-C5; Avestin,
Canada) to achieve stable particles (50–70 nm). The
suspension was cooled to 258C and stored at 48C. The
TLD% associated with DcNP, measured by equilibrium
dialysis under 200-time-excess-volume, was 21.5% T,
15% L, and 95% D. Finally, TLD-in-DcNP (52� 5 nm)
sterile suspension was NHP-ready.

Pharmacokinetic study
Seven NHPs (Macaca nemestrina, 7–12 kg) were enrolled
under approved Institutional Animal Care and Use
Committee protocol. Five NHP were dosed 6.2, 5.1,
10mg/kg with TLD-in-DcNP, while two NHPs were
dosed with the free-mixture TLD, both by subcutaneous
route in the back mid-scapular region. Blood samples
for the TLD-in-DcNP were collected at 0, 0.25, 0.5, 1,
3, 5, 8, 24, 48, 120, 168, 192, 336, 504, 672 h (4weeks)
for drug analysis–the free TLD samples were collected
with same schedule, but until 120 h. Furthermore, in
four NHP dosed with TLD-in-DcNP, in the 48 and 168
h blood samples, peripheral blood mononuclear cells
(PBMC) were isolated, frozen immediately to avoid
drug loss, and analyzed for drug content. For TFV and
3TC, we could only measure the total content (parent þ
metabolites), without discerning triphosphates due to
in-column conversion to parent TFV or 3TC. All 3-
drugs in cell and plasma were analyzed using a
published-validated LC–MS/MS assay [10], adapted
for TLD with specific mass (m/z). Based on 5ml
injection, LOQ/LOD were recorded at 0.25/0.08 ng/
ml for DTG, 0.59/0.2 ng/ml for TFV, and 0.49/0.16
ng/ml for 3TC.

Noncompartmental pharmacokinetic analysis was carried
out using MATLAB2023a. Times-to-peak, peak con-
centrations (Cmax), concentrations at 4weeks (C4w),
apparent terminal half-lives, and areas under the curves
until 4weeks (AUC) were calculated (directly from
integrating time–concentration curve based on trapezoi-
dal rules) for each animal and reported as mean� SD.
Based on sample quality, DTG assay for NHP#5’s PBMC
and free DTG in NHP#7’s plasma did not meet quality
standard, and therefore they were not included in the
final analysis.

For antiviral activity, an in-vitro HIV-1 inhibition assay
was performed to estimate the 90% inhibitory drug
concentration (IC90), as previously described [6], in
presence of a serum protein. The IC90 for TLD-in-DcNP
and free mixture TLD (fixed-dose-ratio) were established
as 0.3, 0.2, and 0.25 ng/ml for TFV, 3TC and DTG,
respectively, and similar between free and DcNP
combinations.
lth, Inc. All rights reserved.
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Results

After systematic studies with DSPC and mPEG2000-
DSPE lipid excipients, TLD 3-HIV drugs with disparate
water solubilities (TFV, 3TC, DTG: log P S3.4, S1.3,
2.4) were successfully stabilized in a DcNP nanosuspen-
sion. The final TLD-in-DcNP suspension contained 6.2,
5.1, 10mg/kg TLD, and 115.1, 45.8 DSPC and
mPEG2000-DSPE (mg/ml). No NHP safety issues,
including injection site reactions, were observed with
both TLD-in-DcNP and free. Drug concentrations in
plasma and PBMC were determined following a
Fig. 1. Effects of DcNP dosage form on the time-course of plasma
(DTG or D) in nonhuman primates (NHPs). Panel a: plasma d
subcutaneous dose of the TLD-in-DcNP or free-soluble mixture g
(PK) parameters results. Panel A. All drugs in NHP receiving TLD-in
presence in the plasma as opposed to free-soluble drugs control at eq
and 10mg/kg DTG. Filled symbols represent plasma drug concentr
symbols represent TLD given as free-soluble TLD combination in 2
Horizontal dashes lines denote the in-vitro-derived IC90 values in se
fee-soluble drug-in-combination. In each graph, there is an inset r
Panel b: noncompartmental PK parameter estimates are based on the
parameter is presented as mean� SD. Time-to-peak is the time nee
peak collected at concentration Cmax. C4w is the drug concentration
courses using classical trapezoidal rules for the 4 weeks study;AUC
a single dose, compared to free TLD; t1/2,z, as the apparent terminal
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subcutaneous dose: [TFV], [3TC] and [DTG] were
detectable in plasma throughout a 4-week NHP study
(Fig. 1a). In comparison, plasma drug levels in the NHP
receiving TLD-free dosage fell below detectable levels
within 3 days.

The plasma concentration peaks for TLD-in-DcNP were
all recorded within the first day (Fig. 1b); comparable to
the equivalent free-mixture. TLD-in-DcNP’s AUC were
7.0-, 2.1-, and 20-fold higher, for TFV, 3TC, and DTG,
respectively (Fig. 1b). Effects of DcNP on TLD half-life
extension were recorded as 10-, 8.3-, and 5.9-fold over
tenofovir (TFV or T), lamivudine (3TC or L), and dolutegravir
rug concentrations over time are presented after a single
iven to NHP. Panel b: noncompartmental pharmacokinetic
-DcNP show extended time as prolonged TFV, 3TC, and DTG
uivalent subcutaneous dose of 6.2mg/kg TFV, 5.1mg/kg 3TC,
ations of TLD drugs in DcNP for 5 NHP, as mean� SD. Empty
NHP as mean (only one NHP with free DTG was available).
rum (protein) as a fixed-ratio presented in the TLD-in-DcNP or
epresenting a zoomed-in view of the first 72 h after injection.
concentration-time course data presented in Panel a. Each PK
ded for the drug to rise to the first identifiable concentration
at 4weeks; AUC is the area under the curve of plasma time-

ratio as the fold enhancement of TLD formulated inDcNP after
elimination half-life half-life of the last identifiable PK phase.

ealth, Inc. All rights reserved.
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Table 1. Effects of DcNP formulated 3-HIV drugs, TLD on enhanced cellular concentrations as measured in the peripheral blood mononuclear
cells from NHPa.

Sample type NHPs dose with TLD in DcNP dosage form

Tenofovir (T) Lamivudine (L, 3TC) Dolutegravir (D)

48 h 168 h 48 h 168 h 48 h 168 h

[Cell] (ng/ml) 1631.8�114.7 989.0�136.9 50.6�4.5 13.4�10.5 1303.8�107.6 278.0�74.9
[Plasma](ng/ml) 731.3�190.8 320.5�89.5 16.8�5.8 0.9�0.3 45.1�18.0 68.6�22.6
Cell/plasma 2.2 3.1 3.0 15 29 4.1

aNHP, nonhuman primatesM. Nemestrinawere given a single subcutaneous injection of TLD-in-DcNP dosage form as described in Materials and
Methods. The peripheral blood mononuclear cells in ng/ml for n¼4 NHP [PBMC or Cell] were immediately isolated from blood samples and
analyzed for drug concentrations in the PBMCs. Data as mean� SD. PBMC-to-plasma noted as cell/plasma drug ratio are based on the mean
values.
the free-soluble drug-combination equivalent. All drug
concentrations were above the estimated IC90 value for
the 4-week study.

Effects of DcNP on intracellular TLD enhancement were
notable as the average cell-to-plasma ratiowere>1, for all
three drugs (Table 1). Intracellular TFV concentration in
PBMC was 2.2- and 3.1-fold higher than plasma, at 48
and 168 h, respectively. Similarly, [total] 3TC in PBMC
was 3- and 15-fold higher than in plasma. Finally, DTG
concentration in PBMCwas 29- and 4.1-fold higher than
in plasma (Table 1).

Collectively, these data indicate that water-soluble TFV,
3TC, and water-insoluble DTG combined into the single
TLD-in-DcNP injectable provided with 4weeks plasma
exposure in NHP above detectable, measurable, and
IC90-predicted levels.
Discussion

A stable-scalable 3-in-1 HIV drug combination, based on
a novel injectable drug combination DcNP platform was
successfully made. This novel TLD-in-DcNP formulation
in NHP sustained plasma levels for 4weeks despite having
disparate physiochemical properties of TFV, 3TC, and
DTG. The higher intracellular PBMC drug levels relative
to plasma for all three drugs suggest that DcNP deliver
these antivirals into cells with efficiency. Given oral TLD
is a current WHO-recommended ‘one-pill-a-day’ HIV
treatment, having a long-acting TLD based on DcNP
dosage form may overcome daily pill fatigue. The
subcutaneous LA-TLD dosage-forms may provide a self-
administration option as opposed to assisted IM-injec-
tion. While the 4-week duration of the 3 drugs in TLD-
in-DcNP may be shorter than the eventual every-2-
month dosing with LA-CAB and LA-RPV [11–13], the
LATLD-in-DcNP reachesCmax without delay and within
1 day (Fig. 1b). As sustained/extended-release dosage
forms, LA-CAB and LA-RPV deposited in the muscular
space exhibit delayed peak plasma concentrations which
are typically reached by 7–10 days [12]. To ensure
Copyright © 2023 Wolters Kluwer Hea
tolerability and address delays in reaching therapeutic
levels, an oral lead-in phase is advisable for cabenuva
treatment. However, for TLD-in-DcNP, an oral lead-in
may not be necessary due to shorter times-to-peak, and
because of the well documented safety profile of TLD in
humans. This could facilitate clinical implementation.

Previously, the DcNP technology was reported to
transform short-acting drug combinations into long-
acting combinations [7,8,14–16]. We have leveraged the
physical and chemical interactions of water-soluble and
insoluble drug substances with amphipathic lipid-
excipients at varying temperatures. As a result, DcNP
technology is able to stabilize physically disparate water-
soluble and -insoluble HIV and cancer drugs, such as
lopinavir, ritonavir, efavirenz, dolutegravir or paclitaxel
with water-soluble lamivudine, tenofovir, or gemcitabine
[7,8,14–16]. The capacity of formulating multiple agents
as one injectable suspension is notable in the HIV long-
acting landscape as DcNP can transform water-soluble
drugs tenofovir and lamivudine into a long-acting
product along with water-insoluble DTG [17].

The 3-HIV drugs containing a potent integrase inhibitor
in one complete HIV-treatment may also provide
sustained viral suppression due to higher and more
consistent intracellular drug levels. By week 1 in NHP,
cell-to-plasma ratios for all 3-TLD drugs exhibited 3- to
15-fold higher than what found in plasma with potential
synchronized TLD enhancement. As TFV is the current
active drug substance of interest (formulated as prodrug
TAF or TDF) to treat people with chronic HBV, TLD-in-
DcNP could provide antiviral coverage for people with
HBV and HIV-HBV.

To inhibit viral replication, TFVand 3TC are phosphor-
ylated intracellularly to the active metabolites (TFV-dP
and 3TC-tP). Previously, we reported with DcNP, TFV
and 3TC, PBMCs isolated from NHP exhibited 60–70%
of intracellular total-TFV concentrations as TFV-dP [14],
and 40% of 3TC as 3TC-tP [8]. These datawere similar to
that reported for oral TDF and 3TC [18–20]. While
remaining to be directly measured, it is likely that DcNP
lth, Inc. All rights reserved.
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formulated 3TC and TFV in the PBMCs are biologically
active with similar fractions of active metabolites to that
with oral dosages.

The predicted target concentrations of the 90% antiviral
activity as TLD-combination in serum, IC90were noted to
be similar between DcNP vs. free-soluble formulation.
The IC90 estimated with serum protein, were noted to be
0.2–0.3 ng/ml (Fig. 1a). The IC90 values for TLD are
based on the fixed-dose combination, which may be
significantly lower than the reported protein-adjusted IC90

for each drug. For instance, the IC90 for the single-agent
DTG is 64 ng/ml [19], whereas in the TLD formulation,
we found it as 0.25 ng/ml. Moreover, comparing the oral
dose-normalized exposure of DTG (AUC/dose) between
NHPs and humans [21,22], the elevated UGT metabolic
clearance ofDTG inNHPs could potentially result in a 24-
fold increase in DTG exposure in humans [23]. Thus,
given a 10mg/kg dose in NHP, the levels observed could
be upscaled to therapeutic ranges for humans.

Previously, we reported that drugs in DcNP formulations
do not form a local depot [24]. Instead, DcNP are rapidly
and completely absorbed by the lymphatic, as opposed to
blood capillary system. The DcNP enable preferential
drug penetration into lymphatic, instead of less permeable
blood, vessels as a first-passage after subcutaneous dosing;
there was no significant retention at the injection site [25].
It is likely that all-drugs in TLD-in-DcNP remain
associated with the DcNP particles, contributing to in-
vivo stability leading to long-acting pharmacokinetics for
all drugs. Earlier studies with TFV-in-DcNP containing
lopinavir/ritonavir introduced into systemic circulation
by IV dosing indicates that >90% of TFV remained
associated with DcNP in blood circulation [24].
Therefore, the observed peaks followed by sustained
levels in the time-course are likely due to a combination
of lymphatic ‘first pass’ absorption, cellular uptake and
retention, and in-vivo formulation stability [24,26,27].

Collectively, the successful transformation of short-acting
to long-acting TLD-in-DcNP may provide an all-in-one
long-acting first-line, complete HIV treatment. This
innovative approach utilizes lipid-stabilized drug-combi-
nation in suspensions, resulting in prolonged pharmaco-
kinetics, enhanced AUC, and increased concentrations in
PBMC. With dose adjustments, this novel all-in-one 3
HIV drug formulation opens new possibilities for long-
acting HIV therapy, potentially transforming the lives of
people living with HIV and HIV-HBV.
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